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Abstract

This paper examines the prediction accuracy of various machine learning (ML) algo-
rithms for firm credit risk. It marks the first attempt to leverage data on corporate social 
irresponsibility (CSI) to better predict credit risk in an ML context. Even though the lit-
erature on default and credit risk is vast, the potential explanatory power of CSI for firm 
credit risk prediction remains unexplored. Previous research has shown that CSI may 
jeopardize firm survival and thus potentially comes into play in predicting credit risk. We 
find that prediction accuracy varies considerably between algorithms, with advanced 
machine learning algorithms (e. g. random forests) outperforming traditional ones (e. g. 
linear regression). Random forest regression achieves an out-of-sample prediction accu-
racy of 89.75 % for adjusted R2 due to the ability of capturing non-linearity and complex 
interaction effects in the data. We further show that including information on CSI in 
firm credit risk prediction does not consistently increase prediction accuracy. One possi-
ble interpretation of this result is that CSI does not (yet) seem to be systematically reflect-
ed in credit ratings, despite prior literature indicating that CSI increases credit risk. Our 
study contributes to improving firm credit risk predictions using a machine learning de-
sign and to exploring how CSI is reflected in credit risk ratings.
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I.  Introduction

This study investigates the prediction accuracy of machine learning (ML) al-
gorithms for firm credit risk using data on corporate social irresponsibility 
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(CSI). We aim to leverage the power of both advanced ML algorithms and data 
on irresponsible firm behavior with regard to ESG aspects (i. e. CSI) to improve 
the accuracy of credit risk prediction. Our study is motivated by research that 
points to the increasingly important role of environmental, social, and govern-
ance (ESG) aspects for firm credit risk. ESG performance has been linked to 
lower firm and credit risk (Stellner et  al. 2015; Jo/Na 2012; Sassen et  al. 2016) 
and to higher credit ratings (Jiraporn et al. 2014; Kiesel/Lücke 2019; Dorfleitner 
et al. 2020; Oikonomou et al. 2014).

Common to these previous studies is that they have predominantly used ESG 
performance data to examine firms’ corporate social performance (CSP). One 
exception, however, is Kölbel et  al.’s (2017) study on the exposure to negative 
ESG performance, based on the idea of corporate social irresponsibility (CSI) 
(Strike et al. 2006). They showed that CSI leads to higher credit risk as priced by 
the market through increased spreads of credit default swaps (CDS). However, it 
is still unclear whether CSI is also systematically reflected in credit ratings and 
thus informs credit risk predictions. Therefore, our study uses a comprehensive 
machine learning regression design to test how consistently CSI has been con-
sidered in the credit risk analyses of major credit rating agencies. It is important 
to note that our study differs from previous research on ESG performance and 
credit risk (e. g. Stellner et al. 2015; Dorfleitner et al. 2020; Sassen et al. 2016) as 
we focus on negative ESG performance as opposed to positive ESG perfor-
mance.

Our study also has both a practical, “supply-driven” motivation and a practi-
cal, “demand-driven” motivation. The suppliers of credit ratings, so-called cred-
it rating agencies, have recognized that ESG aspects are no longer solely a matter 
of philanthropy but may deeply impact firm performance and risk. The docu-
mentation by major credit rating agencies (such as S&P Global) indicates that 
ESG aspects are to some extent reflected in credit ratings. For example, S&P 
Global claims that it “has long considered Environmental, Social, and Govern-
ance (ESG) factors in its credit ratings […], [capturing] ESG factors in many 
areas of [its] methodology.” According to S&P Global, ESG aspects are consid-
ered in credit risk analysis along three dimensions: business risk (e. g. competi-
tive position), financial risk (e. g. cash flow/leverage assessment), and manage-
ment and governance.1 On November 21, 2019, S&P Global issued a press re-
lease on its most recent step toward ESG integration by acquiring RobecoSAM’s 
ESG rating business. 

As far as the “demand” side is concerned, the Principles Responsible Invest-
ment (PRI) Association conducted an investor survey in 2017 and 2018 among 

1  For S&P Global’s claims about ESG integration in credit risk analysis, please see: 
https://www.spglobal.com/ratings/en/products-benefits/products/sustainable-finance and 
https://www.spglobal.com/ratings/en/products-benefits/products/esg-in-credit-ratings#.
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credit analysts, portfolio managers, and ESG analysts about the integration of 
ESG aspects into credit risk analysis and ratings (PRI 2018). The survey found 
that 62.9 % of participants agreed that valuation models are adjusted as a result 
of ESG considerations in their organization. According to participants, the gov-
ernance dimension of ESG most frequently impacts credit risk analysis, fol-
lowed by the environmental and social dimensions. The survey identified the 
three most common reasons for including ESG aspects in credit risk analyses as 
“Risk management,” “Client demand,” and “Fiduciary duty.” The results of this 
survey underpin the constantly increasing demand to integrate ESG aspects into 
credit risk analysis.

Regarding methodology, our decision to use ML algorithms was motivated by 
research in finance that has found evidence for the superior predictive power of 
ML algorithms compared to more traditional algorithms (e. g. Barboza et  al. 
2017; Gu et  al. 2020). ML has proven highly successful in addressing many 
problems ranging from early-day applications (e. g. spam detection) to more re-
cent fields of application (e. g. financial forecasting and portfolio building). Af-
ter long playing merely a minor role in finance, the potential of ML in financial 
prediction and modeling has started to gain momentum. Using ML in bank-
ruptcy prediction (Barboza et  al. 2017), empirical asset pricing and portfolio 
construction (Gu et  al. 2020), stock selection (Rasekhschaffe/Jones 2019), and 
sovereign credit ratings prediction (Bennell et al. 2006) are just a few examples. 
ML techniques are particularly powerful in solving prediction and classification 
tasks due to their ability to closely capture non-linearity, complex relationships, 
and interactions in the data. Common issues of traditional linear algorithms 
such as multi-collinearity or low signal-to-noise ratios are not a serious concern 
for ML techniques, as we show below. Accordingly, our study tests a comprehen-
sive set of ML algorithms for predicting credit risk as measured by credit rat-
ings.

We use an extensive international sample of 43,476 firm-quarter observations 
with a time-series of over 12 years (March 2007 to September 2019). To address 
the potential impact of CSI on credit risk, we used data from RepRisk, which 
specializes in ESG and business conduct risk research. Data on our measure for 
credit risk, long-term issuer credit ratings, were primarily obtained from S&P 
Global. We also used data from the two other major rating agencies, Moody’s 
and Fitch, in an additional analysis. Our study uses algorithms ranging from 
“plain vanilla” linear regression to more sophisticated machine learning tech-
niques such as Multi-layer Perceptron regression. In line with previous research 
(e. g. Barboza et al. 2017), we used sklearn’s2 package default settings for all al-
gorithms to ensure a high degree of replicability and applicability. We assessed 

2  sklearn is the short version for scikit learn. The application programming interface 
(API) reference can be found on https://scikit-learn.org/stable/index.html.
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prediction accuracy with the three most common measures in machine learn-
ing: R2, adjusted R2, and root mean squared error (RMSE). Using default set-
tings also aims to alleviate the frequently expressed criticism that ML tech-
niques are a “blackbox”. Default hyper-parameters enable precisely replicating 
our research. To ensure transparency, all algorithms, hyper-parameters, and set-
tings can be found in Table A.7 and are also available in the sklearn API refer-
ence.

Our study has two main findings. First, using advanced ML algorithms con-
siderably increases prediction accuracy for credit risk by accounting for non-lin-
earity and complex interaction effects in the data. Random Forest regression 
offers the highest out-of-sample prediction accuracy of 89.75 % for adjusted R2, 
indicating that this algorithm reliably predicts credit risk two quarters into the 
future. This result is in line with previous research findings on the similar su-
periority of Random Forest algorithms in default prediction (Barboza et  al. 
2017) and time-series forecasting (Gu et  al. 2020). Second, CSI does not (yet) 
seem to be consistently and systematically reflected in credit risk as measured 
by credit rating data. Incorporating information about CSI into our models 
does not unambiguously increase prediction accuracy for credit risk. This find-
ing at least holds for both the data and the comprehensive set of ML algorithms 
used in this study. One possible interpretation is that CSI is not (yet) incorpo-
rated into the credit risk analyses of rating agencies to such a degree that this 
would result in considerably higher prediction accuracy, as is the case for prof-
itability or liquidity, for example. Another interpretation is that rating agencies 
use a significantly different operationalization of ESG aspects, which is not 
available to the public.

Our study makes several contributions to the literature and has several impli-
cations for market participants. First, to our best knowledge, our study is the 
first of its kind to synthesize credit risk prediction with state-of-the-art machine 
learning algorithms using credit rating data. In a credit risk context, our results 
support the findings of previous research, among others, that advanced ML al-
gorithms are superior to traditional algorithms, particularly in financial predic-
tion tasks (e. g. Barboza et al. 2017; Khandani et al. 2010; Gu et al. 2020). Our 
finding of high prediction accuracy for advanced ML algorithms is based on 
high out-of-sample adjusted R2 and low RMSE, which are robust compared to 
alternative specifications of our ML models. High prediction accuracy allows 
market participants to more reliably assess future credit risk. Our trained mod-
els are ready to use to predict the credit risk of any firm for which relevant data 
are available to the predictors used in our study. Our result points to the grow-
ing importance of machine learning models in the paradigmatic fintech indus-
try. However, our predictive method fundamentally differs from methods of sta-
tistical inference. In particular, machine learning models do not tell us anything 
about the underlying mechanisms (economic and theoretical) between the pre-
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dictor and the target variables (e. g. the reasons for a certain relationship be-
tween predictors and targets).3

Second, to our best knowledge, our study is the first of its kind to investigate 
whether including CSI into ML models increases the prediction accuracy of 
credit risk. In doing so, we also test the extent to which CSI is reflected in the 
credit risk analyses of rating agencies. Even though previous research has found 
a positive relationship between positive ESG performance and credit risk (e. g. 
Dorfleitner et al. 2020; Stellner et al. 2015; Sassen et al. 2016), we explicitly ex-
plore negative ESG performance in a novel machine learning design. Previous 
research has shown that market participants account for CSI in evaluating cred-
it risk, as evidenced by increased spreads of CDS (Kölbel et al. 2017). However, 
using credit ratings as a proxy for credit risk, our results indicate that higher CSI 
is not (yet) reflected to a larger extent in the credit risk analyses of major rating 
agencies. Therefore, market participants should be aware that common credit 
ratings might not entirely reflect the environmental and societal business con-
duct risks increasingly confronting firms. Examples of increased business con-
duct risk include weaknesses in corporate governance, low product safety, or 
compromised employee well-being. All of these factors may entail substantial 
future expenses (e. g. compensation payments) and reputational damages. The 
remaining five sections of this paper are structured as follows. Section II dis-
cusses related ML applications and empirical literature on ESG aspects and 
credit risk. Section III describes the research design of this study. Section IV 
provides some descriptive statistics for our sample. Section V displays the re-
sults while Sections VI and VII consider the implications of our findings and 
offer concluding remarks.

II.  Literature Review

This section considers related ML applications and their potentially superior 
explanatory power in credit risk prediction. It also discusses the empirical liter-
ature on the relationship between ESG aspects and credit risk. 

1.  Machine Learning Applications 

The application spectrum of ML algorithms is vast and growing. ML applica-
tions range from cancer prognosis and prediction (Kourou et al. 2015), genetics 
and genomics (Zou et al. 2019), and healthcare (Jiang et al. 2017) to automated 

3  In this paper, we use the terms “predictor” and “target,” which are more common in 
a machine learning context, yet roughly similar to the terms “independent variable” and 
“dependent variable,” respectively.
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text classification (Sebastiani 2002). ML algorithms have also been shown to 
better solve financial prediction and classification problems than traditional fi-
nancial models. Therefore, ML algorithms potentially add value to many fi-
nance-related fields of application. For instance, machine learning can improve 
forecasting consumer credit risk and thus cuts costs from credit losses (Khan-
dani et al. 2010). Machine learning may also help to solve financial prediction 
problems such as security pricing, portfolio construction, financial time series 
prediction, or risk management (Gu et al. 2020; Rasekhschaffe/Jones 2019). Ad-
ditional ML applications include sovereign credit rating prediction (Bennell 
et  al. 2006), forecasting interest rates, corporate bond ratings, loan approvals, 
and identifying suspicious transactions (Bose/Mahapatra 2001).

Most noticeably, predicting firm default has gained quite some momentum 
over the last 25 years with ever-evolving ML algorithms and exponentially in-
creasing computing power and data availability. Early studies on corporate de-
fault using “intelligent” techniques such as neural networks include Altman et al. 
(1994) and Boritz/Kennedy (1995). Most of these studies offered partially incon-
clusive results, possibly due to the comparably low computational power, data 
availability, or pure immaturity of the subject and algorithm implementations.

In a more recent study, Barboza et al. (2017) compared a wide range of more 
advanced ML algorithms to traditional ones of default prediction, such as logis-
tic regression. Default prediction is a typical classification problem (i. e. 1 for 
default, 0 otherwise). Using US data, they showed that the majority of more ad-
vanced ML algorithms are significantly superior in default prediction accuracy 
than traditional techniques. The authors were also able to increase the total es-
timated prediction accuracy by about 11 percentage points using advanced ML 
algorithms (e. g. random forests).4 This increased prediction accuracy is very 
likely due to ML algorithms’ special treatment of non-linearity, complex interac-
tion effects, and lower sensitivity to multi-collinearity. Building on these find-
ings, we expect that ML techniques will also add considerable explanatory pow-
er to help predict credit risk in a regression context.

2.  Corporate Social Irresponsibility and Credit Risk

Similar to default risk, predicting credit risk is important for both researchers 
and practitioners for numerous reasons. Credit risk is the probability of a debtor 
not repaying the principal and interest on the debt in part or in full (Vassalou/
Xing 2004). Being unable or unwilling to repay all debts is equivalent to a de-

4  Some of the work in predicting default risk even considers advanced hybrid ML al-
gorithms as a superior method (Yeh et al. 2014). However, we will not discuss these stud-
ies due to their specificity and restricted applicability.
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fault. Thus, credit risk is also an ex-ante evaluation of firm default risk. The first 
comprehensive theory and model of the pricing of corporate debt (i. e. credit 
risk) was developed by Merton (1973, 1974), whose work was later advanced by 
Leland (1994). These models not only enabled pricing any corporate liability but 
were also used to predict bankruptcy (e. g. Bharath/Shumway 2008).

Merton’s (1974) and Leland’s (1994) models have also contributed to continu-
ally developing the credit risk analyses of credit rating agencies. For market par-
ticipants, these rating agencies became an interesting source of credit risk as-
sessments as they provided information about the downside risk of firms no 
longer being able to repay their debts in part or in full. Besides their importance 
for market participants, credit ratings are also one of the most important drivers 
of capital structure choice by executives (Graham/Harvey 2001). Changes in 
credit ratings may result in very concrete costs such as changes in coupon rates, 
losing a contract, or triggering the repurchase of bonds (Kisgen 2006). Similar to 
previous research (e. g. Sun/Cui, 2014; Hsu/Chen 2015; Kealhofer 2003), our 
study uses these credit ratings as a proxy for credit risk. Credit risk is economi-
cally relevant in various dimensions. Firms with higher distress and credit risk 
offer significantly lower financial returns (Dichev 1998; Campbell et  al. 2008). 
Moreover, credit risk has been linked to market illiquidity and increased yield 
spreads (Ericsson/Renault 2006). Ultimately, higher credit risk hurts firm profit-
ability due to higher refinancing costs. Therefore, credit risk is key not only to 
the decision-making processes of lenders but also to those of investors.

In addition to the importance of credit risk, the impact of CSP on credit risk 
has attracted quite some attention. CSP is multidimensional and thus covers 
firm behavior in the environmental (e. g. pollution control), social (e. g. diversi-
ty), and corporate governance (e. g. stakeholder strategy) dimensions (Waddock/
Graves 1997). CSP has been shown to reduce the risk of falling into default (e. g. 
Sun/Cui 2014) and firm risk (e. g. Jo/Na 2012; Lee/Faff 2009). The aforemen-
tioned research suggests that the risk-reducing effect of CSP is also reflected in 
lower credit risk. In fact, rating agencies tend to reward socially and environ-
mentally responsible firms with higher credit ratings (Hsu/Chen 2015; Jiraporn 
et al. 2014; Kiesel/Lücke 2019). In particular, high performance on ESG aspects 
concerning primary stakeholders (i. e. employees, customers, etc.) plays a major 
role in higher credit ratings (Ashbaugh-Skaife et al. 2006; Attig et al. 2013). An-
ecdotal evidence exists for cases in which credit ratings were alternated due to 
changes in the CSP of firms such as Wells Fargo or Toshiba in the period 
2016 – 2018 (Henisz/McGlinch 2019).

Another stream of research has investigated the spreads of bonds and bank 
loans (henceforth, credit spreads) as a measure of credit risk. Several studies 
have shown that firms with high (low) CSP are rewarded (penalized) by the cor-
porate bond market with lower spreads (Oikonomou et  al. 2014; Goss/Roberts 
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2011; Chava 2014; Stellner et al. 2015; Drago et al. 2019). On the one hand, less 
responsible firms pay between 7 and 18 basis points higher bond risk premia 
(Goss/Roberts 2011). Moreover, firms that have environmental concerns are 
charged significantly higher interest rates on bank loans (Chava 2014). On the 
other hand, performing well on ESG aspects such as “support for local commu-
nities, higher levels of marketed product safety and quality characteristics, and 
avoidance of controversies regarding the firm’s workforce” positively impacts 
bond risk premia (Oikonomou et al. 2014). Moreover, high CSP is linked to re-
duced zero-volatility spreads (Stellner et  al. 2015). The announcement of ESG 
performance ratings has also been shown to decrease CDS spreads, pointing to 
the credit risk-decreasing role of ESG performance (Drago et al. 2019).

However, the evidence on CSP and credit risk is rather mixed. The same study 
that found reduced zero-volatility spreads due to high CSP did not find a statis-
tically significant effect of high CSP on credit ratings (Stellner et  al. 2015). In 
terms of credit spreads, another study found that more responsible firms have to 
pay higher bond risk premia (Menz 2010). However, due to the lack of statistical 
significance, Menz (2010) concluded that environmental and social factors have 
not yet been considered in corporate bond pricing. Moreover, both Stellner et al. 
(2015) and Menz (2010) focused on the European market, which might explain 
their findings.

While the relationship between positive CSP (i. e. ESG performance) and 
credit risk is well explored, a more recent study has shifted the focus from CSP 
to CSI (i. e. negative ESG performance). CSI can be defined as a “set of corpo-
rate actions that negatively affects an identifiable social stakeholders legitimate 
claims” (Strike et al. 2006, p. 852). It comprises behavior that is explicitly irre-
sponsible, while the absence of this behavior is not necessarily responsible 
(Strike et al. 2006). For example, while the violation of human rights is general-
ly perceived as irresponsible, not violating human rights, however, should be a 
matter of course. This observation also explains why corporate socially respon-
sible behavior is hardly reported in the news, whereas socially irresponsible be-
havior receives high media coverage (Kölbel et al. 2017).

Kölbel et al. (2017) investigated whether CSI is linked to higher financial risk. 
Contrary to the idea of a value-enhancing and reputation-building effect of CSP 
(i. e. ESG performance), they instead examined the risk-generating effects of 
CSI, based on research by Strike et al. (2006). To measure CSI, they used data 
from RepRisk. The link between CSI and financial risk is promising as both 
concern the risk dimension of firms. Kölbel et al. (2017) found that firms facing 
CSI also experience significantly higher CDS spreads and that this effect is pri-
marily driven by the governance dimension.

Our investigation is based primarily on Kölbel et al. (2017)’s findings on CSI 
and CDS spreads. Their results lead us to expect that information on CSI should 
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be relevant to predicting credit risk and thus be priced in credit ratings. In con-
trast to previous studies, we are interested in robust empirical evidence as to 
whether CSI (i. e. compared to ESG performance) informs credit risk predic-
tions as reflected in credit ratings (i. e. compared to CDS spreads). Similar to 
Kölbel et al. (2017), we used data on CSI from RepRisk. Moreover, we are also 
interested in the predictive ability that a machine learning regression design can 
add to this kind of prediction problem.

III.  Research Design

This section discusses CSI predictors, additional market- and account-
ing-based predictors, the measure of credit risk (i. e. the target), and the sample 
collection process. The data part is followed by explaining the ML algorithms 
used in this study.

1.  Predictors for Corporate Social Irresponsibility

We used data from RepRisk to measure the CSI of firms. RepRisk specializes 
in ESG and business conduct risk research by leveraging artificial intelligence 
and big data to derive relevant risk metrics. Therefore, RepRisk adheres to the 
term “ESG risk.” RepRisk captures material ESG risks and violations of interna-
tional standards, which can impact the reputation and financial performance of 
firms. They screen over 90,000 public sources and stakeholders in 20 different 
languages on a daily basis. Thus, risk metrics are also updated daily. Their 
screening universe comprised 130k public and private firms (cross-sector and 
cross-market) when we conducted our study. The historical data on RepRisk 
dates back to January 2007. The research scope covers 28 broad, comprehensive, 
and mutually-exclusive ESG issues. For instance, “waste issues,” “local pollu-
tion,” “forced labor,” “human rights,” and “fraud.” Every risk incident in the Re-
pRisk database is linked to one of these 28 ESG issues. RepRisk identifies any 
company that is associated with a negative ESG incident.

RepRisk analyzes each risk incident according to its severity (harshness), 
reach (influence), and novelty. Finally, using a proprietary algorithm, RepRisk 
quantifies a firm’s ESG risk with its “RepRisk Index (RRI).” The RRI captures 
and quantifies reputational risk exposure related to the 28 ESG issues. It ranges 
from 0 to 100, and higher values indicate higher ESG risk exposure. RepRisk 
provides three different RRI values. First, Current RRI, which measures the cur-
rent ESG risk exposure (i. e. quarterly in our case). Second, Peak RRI, which 
captures the highest level of ESG risk exposure over the two previous years. 
While the Current RRI is instead a snapshot of a firm’s exposure to ESG risks, 
Peak RRI accounts for the time-delayed manifestations of overall ESG risk. 
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Third, RRI Change or Trend, which is the past 30-day increase or decrease of 
the RRI. Since we used quarterly observations, we only considered Current RRI 
and Peak RRI as predictors of credit risk. We further used a vector that contains 
the number of incidents for the 28 single ESG issues multiplied by the respective 
news count as an alternative measure of CSI.5

One of the advantages of RepRisk compared to, for instance, MSCI ESG or 
Refinitiv is that the RRI is based on third-party disclosed information (i. e. news 
media) rather than on self-disclosed information. We are, of course, aware that 
this fact does not necessarily imply an entirely objective measure of CSI. This 
concern is reinforced by the fact that the algorithm calculating the RRI is pro-
prietary and thus not available for external scrutiny. Moreover, only a few stud-
ies have so far used RepRisk data (e. g. Kölbel et al. 2017). We believe this pre-
sents a chance but must also be kept in mind as a caveat. Ultimately, we find that 
RepRisk provides a reliable estimate of CSI (i. e. not ESG performance), one that 
is readily available to researchers and market participants.

2.  Additional Accounting and Market Related Predictors

In addition to CSI, we controlled for several important factors of credit risk, 
which are well-founded in the previous literature. We obtained our additional 
credit risk predictors from Compustat/CRSP for all our sample firms. We follow 
Agarwal and Taffler’s (2008) three main arguments for an accounting-based 
model: First, credit risk does not suddenly arise but evolves slowly and thus is 
best reflected in fundamental values. Second, “window dressing” very likely on-
ly marginally affects predictions when using a sophisticated set of accounting 
variables. Third, loan covenants tend to be based on fundamental values, as re-
flected in accounting-based numbers.

Most importantly, we used the common accounting-based variables for cor-
porate distress as evidenced by Altman (1968) and Ohlson (1980): Working cap-
ital/Total assets (LIQU), Retained earnings/Total assets (PROF), Earnings before 
interest and taxes (Ebit)/Total assets (OPEF), Market value/Long-term debt 
(ME), and Sales/Total assets (AT). Moreover, we used predictors that account 
for short-term effects on financial performance and credit risk (Barboza et  al. 
2017). These variables include growth in assets (ASSETS), growth in sales 
(SALES), and percentage change in the price-to-book ratio (P/B). Since firms 
with higher leverage are also more likely to have difficulties in repaying their 
debts, we accounted for the predictive ability of long-term debt/common equity 

5  More information on our ESG Issues measure can be found in Table A.6. For more 
information on the RepRisk methodology, please see https://www.reprisk.com/content/
static/reprisk-methodology-overview.pdf.
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(LEV) (Oikonomou et  al. 2014; Attig et  al. 2013; Sun/Cui 2014). More mature 
firms are usually less likely to face default, which is why we included firm age 
(AGE) as a predictor (Sun/Cui 2014). Firm age is calculated as the current year 
minus the year in which the company first appeared in the Compustat/CRSP 
database. Smaller firms usually experience much higher credit risk than larger 
firms (Vassalou/Xing 2004). Therefore, we included firm size (SIZE) as a predic-
tor.

Following Merton (1974) and Ashbaugh-Skaife et al. (2006), we added operat-
ing income before depreciation/interest expense (interest coverage; INTCOV) 
as an early indicator of the ability to repay debt and net PPE/total assets 
(CAPINT).6 Based on the Global Industry Classification Standard, we also in-
cluded sector dummies into our models to account for the impact of sector 
specificity on credit risk. All our variables are calculated as ratios at the end of 
every quarter, which allowed us to investigate a large international sample with-
out facing currency conversion issues. However, in an additional analysis, we 
repeated our main analyses with a more homogeneous sample by using only US 
firms. All predictors were measured at two quarters before the credit rating (i. e. 
with a lag of two quarters, i. e. at t − 2) to measure the ex-ante predictive ability 
of our models. 

3.  Proxy for Credit Risk

Regarding the target variable, our study differs substantially from previous re-
search on default or bankruptcy prediction, which has commonly used actual 
firm defaults, as shown in Alaka et al. (2018). However, we are interested in firm 
credit risk that ultimately informs ex-ante about firm default probability. We 
measured credit risk by S&P long-term issuer credit ratings (henceforth S&P 
ratings) as these ratings constitute an overall and forward-looking evaluation of 
a debtor’s creditworthiness (i. e. the capacity and willingness to repay the obliga-
tions due).7 S&P ratings have been widely used as a proxy for firm credit risk 
(e. g. Sun/Cui 2014; Hsu/Chen 2015; Kealhofer 2003).

In line with Hsu/Chen (2015) and Avramov et  al. (2009), we coded the S&P 
ratings as a numerical variable ranging from 1 to 22. 1 indicates a AAA rating 
(i. e. the highest possible) and 22 reflects a D rating (i. e. the lowest possible). 
Thus, higher values for S&P ratings indicate higher credit and default risk, and 

6  In contrast to Ashbaugh-Skaife et al. (2006), we used net values for Property, Plant, & 
Equipment (PPE) as these were available for both US and international firms on Com-
pustat/CRSP.

7  For detailed information on S&P ratings, please see https://www.standardandpoors.
com/en US/web/guest/article/-/view/sourceId/504352.
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vice versa. It is important to note that S&P claims that their rating process con-
siders corporate sustainability and social responsibility activities.8 They also 
claim that ESG aspects are considered along three dimensions in their rating 
process: business risk (e. g. competitive position), financial risk (e. g. cash flow/
leverage assessment), and management and governance. Therefore, when as-
suming that ESG aspects are reflected in credit ratings, using information about 
CSI in our models should inform credit risk predictions and thus increase pre-
diction accuracy.

4.  Sample Development

We began collecting data for CSI from RepRisk by retrieving quarterly obser-
vations between March 31st, 2007 (i. e. the inception of the RepRisk database), 
and September 30th, 2019 (i. e. the latest available data), for all firms in the Re-
pRisk universe. This procedure yielded 805,617 firm-quarter observations with 
available data. However, the RepRisk universe also contains many private (i. e. 
unlisted) firms whose accounting- and market-based values are available only to 
very limited extent. In fact, after obtaining data from Compustat/CRSP on the 
additional predictors and merging the two datasets, our sample shrank to 
502,090 firm-quarter observations. Next, we obtained quarterly S&P long-term 
issuer credit ratings from Compustat-Capital-IQ for the same period. If a rating 
was revised within the same quarter, we used the rating that was closer to the 
end of the quarter and thus also more up-to-date. After merging credit risk data 
with RepRisk and Compustat/CRSP data and after dropping observations with 
missing values, we ended up with an unbalanced final sample of 43,476 
firm-quarter observations (representing 1,850 firms). In a machine learning 
context, it is vital to further split one’s sample into a training sample and a test 
(or validation) sample. More specifically, our ML models were only trained on 
the training sample and not on the test sample. Accordingly, we used the test 
sample to make out-of-sample predictions. For the training sample, we used 
80 % of our data (i. e. 34,780 firm-quarter observations). The test sample con-
sisted of the remaining 20 % (i. e. 8,696 firm-quarter observations). We devel-
oped a stratified sampling approach, ensuring that the target variable’s labels (1 
for AAA to 22 for D) were first shuffled and then approximately evenly distrib-
uted among the training and test samples.9 Without stratifying, we would have 

8  For more information on ESG considerations in S&P credit ratings, please see https://
www.spglobal.com/ratings/en/products-benefits/products/sustainable-finance and https:// 
www.spglobal.com/ratings/en/products-benefits/products/esg-in-credit-ratings#.

9  We stratified our sample by applying the allclose function of NumPy (https://docs.
scipy.org/doc/numpy/reference/generated/numpy.allclose.html). The exact code can be 
found in our Github repository, to which access can be granted on request.
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risked biasing our results by uneven distribution or by the order of the target 
variable labels due to a purely random split between training and test sample 
(i. e. sample bias).

5.  Prediction Using a Selection of Machine Learning Algorithms

We used Python 3.7.4 and a set of algorithms implemented by the widespread 
ML library sklearn to train all models, except for one, and to make predictions 
with new and unseen data (i. e. out-of-sample). We used the following algo-
rithms: Linear regression, Elastic Net, Ridge, Ordinal Ridge, Support Vector Re-
gression (SVR) with a linear kernel, SVR with a radial basis function (RBF) ker-
nel, Decision Tree regression (DTR), Random Forest regression (RFR), Ada-
Boost regression (AdaBoostR), Gradient Boosting regression (GBR), K-nearest 
Neighbors regression (KNNR), and Multi-layer Perceptron regression (MLPR). 
While the first eleven algorithms belong to the typical ML repertoire, the last 
algorithm, MLPR, is a deep learning technique. Algorithms that do not explicit-
ly account for non-linearity in the data (i. e. Linear regression and SVR with a 
linear kernel) or simply apply a regularization term (i. e. Elastic Net, Ridge, and 
Ordinal Ridge) are considered “traditional” algorithms in this study. The re-
maining algorithms are considered some sort of “advanced” ML algorithms. Be-
low, we describe the applied algorithms in more detail.

a)  Linear Regression

Our first algorithm is “plain vanilla” linear regression (or ordinary least 
squares (OLS) regression). By fitting a linear model’s coefficients to the training 
data, we minimized the residual sum of squares between the actual output and 
the approximated output.

b)  Elastic Net

Elastic Net is a regularization technique that adds a cost term to linear regres-
sion. Elastic Nets can be useful when only a few predictors are relevant or when 
the predictors are highly correlated. Elastic Net simply shrinks the weights of 
the irrelevant predictors. Since default and credit risk is usually determined by a 
considerable number of potential factors (e. g. accounting- and market-related 
data as well as non-financial data), we ran an Elastic Net algorithm on our ex-
tensive sample. This approach allowed us to test whether only a subset of pre-
dictors already yields reasonable results. Elastic Net is a common regularization 
technique that has also been applied in finance (e. g. Wu/Yang, 2014).
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c)  Ridge

Ridge regression is another regularization technique that applies a penalty to 
the size of coefficients, usually increasing their robustness against collinearity 
and avoiding over-fitting on the training data.

d)  Ordinal Ridge

Similar to Ridge regression, Ordinal Ridge applies the C2 penalty for regular-
ization. However, the main difference to Ridge regression is that the output val-
ue is ordinal (i. e. a scale of categories where the relative ordering matters). Or-
dinal regression models explicitly account for data ordinality (McCullagh 1980). 
Ordinal Ridge seems to be a promising algorithm for our type of optimization 
problem since we are measuring credit risk continuously, yet on a predeter-
mined scale from 1 to 22.10

e)  Support Vector Regression

Support Vector Regression (SVR) or Support Vector Machines (SVM) are an-
other very common ML algorithm with various possible applications, for in-
stance, bankruptcy prediction (Chen 2011). sklearn implements t:-SVR based 
on the LIBSVM library from Chang/Lin (2011) and the LIBLINEAR library 
from Fan et  al. (2008).11 SVR uses kernel functions to solve the optimization 
problem. We used two SVR algorithms: one with a linear kernel (LinearSVR), 
another with a radial basis function (RBF) kernel (RbfSVR). In general, SVR fits 
a hyperplane on the training data, which maximizes the margin (i. e. as many 
training instances within the margin, restricted by the margin of tolerance, de-
fined as t:) and thus minimizes the error.

10  We used the “mord” package to implement Ordinal Ridge since sklearn has no or-
dinal ridge (or even simple ordinal regression) implementation. For more information, 
please see https://pythonhosted.org/mord/. More details on the scale of our target varia-
ble can be found in Section 3.

11  For reasons of consistency, we adhered to the LIBSVM implementation in sklearn 
for RbfSVR and LinearSVR. However, it is very likely that using the LIBLINEAR imple-
mentation for LinearSVR increases computing efficiency and decreases training time 
compared to the LIBSVM implementation (Fan et al. 2008).
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f)  Decision Tree Regression

In contrast to, for instance, linear regression, Decision Tree regression (DTR) 
is a non-parametric algorithm. However, it also leverages supervised learning12, 
similar to all the other algorithms, except for the only artificial neural network 
(ANN) method in our study, Multi-layer Perceptron Regression (MLPR). DTR 
fits a model to the training data that predicts an output value by learning from 
simple decision rules based on the predictor’s data. DTs are easy to understand 
and interpret. They also require almost no data adjustments (e. g. in contrast to 
MLPR). sklearn uses an optimized version of the Classification And Regression 
Tree (CART) algorithm, which was first introduced by Breiman et al. (1984).

g)  Random Forest Regression

DTR typically over-fits the training data and thus exhibits high variance when 
making predictions based on new and unseen data (i. e. the test data). Random 
Forest regression (RFR) is an ensemble approach. It makes predictions by com-
bining several base estimators (e. g. decision tree regressors) through averaging 
(also called “bootstrap aggregating” or “bagging”). The combined and averaged 
prediction obtained by bagging is usually superior to the prediction of a single 
estimator (i. e. higher accuracy, robustness, and generalizability) (Breiman 2001). 
This superiority originates from two sources of randomness in every single esti-
mator: bootstrapped sampling and random subsets of predictors (Breiman 
2001). Bootstrapped sampling ensures that every estimator (e. g. decision tree 
regressor) is trained on a different draw (with replacement) from the sample. 
The increased randomness implicates more decoupled prediction errors be-
tween the single estimators; thus, trading decreased variance for slightly in-
creased bias.13 Ultimately, bagging reduces over-fitting the model on the train-
ing data (i. e. higher generalizability). 

h)  AdaBoost Regression

In contrast to the bagging algorithm RFR, AdaBoost regression (AdaBoostR) 
uses a technique called “boosting.” In boosting algorithms, the single estimators 
are built sequentially rather than independently or in parallel (as in bagging al-
gorithms). Therefore, boosting fits a series of so-called “weak learners” (e. g. 
small decision tree regressors) on repeatedly adjusted training data (Hastie et al. 

12  For a detailed explanation of supervised vs. unsupervised learning, please see 
Basheer/Hajmeer (2000).

13  For a discussion on the bias-variance trade-off, please see Géron (2017, p. 129).
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2009). At each iteration, the boosting algorithm learns from the errors made by 
the previous weak learner and improves the prediction. Thus, samples that are 
difficult to predict become increasingly influential with every iteration (Hastie 
et al. 2009). The general idea of AdaBoostR is that the weights of the various in-
stances are adjusted at every iteration (Géron 2017).

i)  Gradient Boost Regression

In addition to AdaBoostR, we decided to use Gradient Boosting regression 
(GBR) as an alternative algorithm using the boosting technique. In contrast to 
AdaBoostR, at every iteration, GBR fits a new predictor on the residual errors of 
the previous predictor.

j)  K-neaerest Neighbors Regression

K-nearest Neighbors regression (KNNR) is another very intuitive and effi-
cient regression algorithm. It makes predictions based on new data by relying 
on the similarity of predictors (or features) of data points from the training data. 
KNNR predicts a value based on how closely it can be resembled with the points 
in the training data. If k equals 5, KNNR uses the average of the five closest 
neighboring data points as a final prediction.

k)  Multi-layer Perceptron Regression

The last algorithm is Multi-layer Perceptron regression (MLPR), which is a 
DL technique. We used the widespread and well-proven algorithm implementa-
tion for first-order optimization problems called Adam, developed by Kingma 
and Ba (2015). Adam uses stochastic optimization only requiring first-order 
gradients. Adam is very memory-efficient, and parameter updates occur inde-
pendently of rescaling the gradient (Kingma/Ba 2015). 

Most importantly, and similar to previous research (e. g. Barboza et al. 2017), 
we used default settings for all algorithms. Training and prediction time did not 
exceed one hour in total, given our tidy data set and an efficient algorithm im-
plementation with sklearn. Similar to Barboza et  al. (2017), none of the algo-
rithms needed more than six minutes for training and prediction. More infor-
mation on the algorithm settings can be found in Table A.7 in the appendix.

We followed previous research and explicitly refrained from data adjustments 
such as standardization, normalization, or the removal of outliers (e. g. Barboza 
et al. 2017; Cleofas-Sánchez et al. 2016). In addition to using default package set-
tings of ML algorithms, this approach not only increases replicability but also 
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enables drawing conclusions about practical applicability. However, it is very 
likely that the predictive ability of some of our models considerably suffered un-
der this approach. The two exceptions were SVR (linear and RBF kernel) and 
MLPR, for which we used standardized data (i. e. removed the mean and scaled 
to unit-variance). Previous research has shown that predictor scaling (i. e. stand-
ardization) is a crucial requirement for algorithms such as SVR and MLPR (e. g. 
Shanker et  al. 1996). Unreported results have shown that using non-standard-
ized predictors in SVR and MLPR may lead to highly biased and arbitrary re-
sults. Moreover, training time is much higher with non-standardized predictors, 
which ultimately led us to retain the standardized version as replication needs 
less computing power. Figure 1 illustrates the process of training and testing in 
our machine learning setting.

We solved the credit risk prediction task by using the three aforementioned 
distinct predictors (Current RRI, Peak RRI, and the vector of ESG issues) and by 
leveraging all of the explained ML algorithms. In each of the three specifications, 
we included a vector of the additional accounting- and market-related predictors 
and a vector of sector dummies. We benchmarked the three specifications against 
a baseline specification that only consisted of the accounting- and market-relat-
ed predictors and sector dummies. We tested for model accuracy using the three 
most common measures for regression designs: R2, adjusted R2, and RMSE.

Note(s): This figure shows the training and testing process using all relevant predictors and algorithms. The model 
specifications are not part of this illustration as the same training and testing procedure was used for all specifica-
tions.

Figure 1: Graphical Approach
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Similar to Gu et al. (2020), we also tested the pairwise differences in predic-
tion accuracy for statistical significance according to the Diebold/Mariano 
(1995) test (henceforth, DM test).14 We made two types of comparison: First, we 
compared differences in accuracy between the predictions of algorithms (e. g. 
Linear regression vs. Random Forest regression) but within our baseline model 
(i. e. without considering CSI). Second, we compared differences in accuracy be-
tween the predictions of our models (e. g. baseline vs. Current RRI) but within a 
certain algorithm (e. g. Linear regression). In both cases, we defined the test sta-
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IV.  Descriptive Statistics

Table 1 shows the mean, median, standard deviation, minimum, and maxi-
mum of the target variable and the predictors used in our models. According to 
RepRisk, the RRI of most international firms is located somewhere between 26 
and 49 (medium risk exposure) due to their global footprint, and only very few 
firms reach an RRI between 75 and 100 (extremely high-risk exposure). In our 
sample, the mean and median of Current RRI and Peak RRI are below 25, which 
is the threshold for “medium ESG risk exposure” according to RepRisk. Howev-
er, standard deviation is comparably high (13.9 and 18.0 points, respectively). 
The minimum and maximum values for Current RRI and Peak RRI are 0 and 
79, respectively. Zero represents firm-quarter observations with “no ESG risk 
exposure” while 79 represents observations with “extremely high ESG risk expo-
sure.” Therefore, the descriptives indicate adequate variation in our data and 
thus the potentially good explanatory and discriminatory power of our two 
main predictors. The remaining predictor values are comparable with other 
studies (e. g. Barboza et  al. 2017; Oikonomou et  al. 2014). However, as men-
tioned, we refrained from data adjustments (e. g. removing outliers or scaling), 
as reflected in the summary statistics. 

Table 2 shows the summary statistics for all 28 ESG issues covered by Rep
Risk. The three issues “Corruption, bribery, extortion and money laundery,” 
“Fraud,” and “Violation of national legislation” had the highest single news 
count in at least one firm-quarter observation (30, 22, and 28, respectively). 

14  Our DM test includes the modifications suggested by Harvey et al. (1997).

OPEN ACCESS | Licensed under CC BY 4.0 | https://creativecommons.org/about/cclicenses/
DOI https://doi.org/10.3790/ccm.53.4.513 | Generated on 2025-11-24 07:08:19



	 Corporate Social Irresponsibility and Credit Risk Prediction� 531

Credit and Capital Markets 4 / 2020

A value of 30 for “Corruption, bribery, extortion and money laundery” indicates 
that this specific firm was involved in or linked to 30 different risk incidents 
during the quarter. The same applies to the other ESG issues. Of course, these 
values are extremes, and the mean and median show that the majority of firms 
experienced only very few incidents around all ESG issues. However, these ex-
tremes show that single firms may be massively exposed to CSI, which in turn 
may considerably jeopardize firm reputation, firm performance, and solvency. 
Apart from that, the sample firms’ incidents seem to be quite evenly distributed 
among the remaining ESG issues.

Table 1
Summary Statistics – Predictors and Targets

Mean SD Min 50 % Max

Credit Risk 10.681 3.193 1.000 10.000 22.000

Current RRI 13.466 13.856 0.000 13.000 79.000

Peak RRI 24.539 18.048 0.000 27.000 79.000

LIQU 0.100 0.148 −4.756 0.080 0.862

PROF 0.119 0.451 −9.649 0.136 2.184

OPEF 0.022 0.020 −0.360 0.019 0.458

ME 0.844 2.161 −12.189 1.001 16.801

AT 0.208 0.163 −0.127 0.166 2.245

ASSETS 0.233 42.616 −1.000 0.006 8,885.494

SALES 0.244 41.644 −5.480 0.010 8,682.722

P/B 0.248 59.139 −3,384.727 −0.011 8,303.042

LEV 6.143 746.36 7,871.500 0.689 109,761.545

AGE 27.661 17.999 0.000 22.000 69.000

SIZE 9.289 1.896 3.957 8.952 19.694

INTCOV 1.993 1.113 −6.444 1.961 9.588

CAPINT 0.352 0.256 0.000 0.300 0.989

Notes: This table reports time-series averages of cross-sectional means and standard deviations (SD), the mini-
mum, the 50th percentiles (Median) and the maximum for all variables. The number of observations (N) is 43,476.
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Table 2
Summary Statistics – ESG Issues

Mean SD Min 50 % Max

Animal Mistreatment 0.003 0.055 0.0 0.0 2.0

Anti-Competitive Practices 0.041 0.268 0.0 0.0 7.0

Child Labor 0.008 0.106 0.0 0.0 4.0

Climate Change, GHG Emissions, and Global Pollution 0.024 0.201 0.0 0.0 8.0

Controversial Products and Services 0.024 0.240 0.0 0.0 13.0

Corruption, Bribery, Extortion and Money Laundry 0.048 0.463 0.0 0.0 30.0

Discrimination in Employment 0.009 0.108 0.0 0.0 3.0

Executive Compensation Issues 0.006 0.085 0.0 0.0 3.0

Forced Labor 0.009 0.118 0.0 0.0 7.0

Fraud 0.041 0.332 0.0 0.0 22.0

Freedom of Association and Collective Bargaining 0.011 0.117 0.0 0.0 3.0

Human Rights Abuses and Corporate Complicity 0.049 0.312 0.0 0.0 18.0

Impacts on Communities 0.084 0.449 0.0 0.0 11.0

Impacts on Landscapes, Ecosystems and Biodiversity 0.076 0.460 0.0 0.0 27.0

Local Participation Issues 0.014 0.144 0.0 0.0 4.0

Local Pollution 0.061 0.404 0.0 0.0 25.0

Misleading Communication 0.014 0.140 0.0 0.0 4.0

Occupational Health and Safety Issues 0.032 0.227 0.0 0.0 10.0

Other Environmental Issues 0.000 0.005 0.0 0.0 1.0

Other Issues 0.000 0.011 0.0 0.0 1.0

Other Social Issues 0.000 0.005 0.0 0.0 1.0

Overuse and Wasting of Resources 0.005 0.081 0.0 0.0 4.0

Poor Employment Conditions 0.034 0.240 0.0 0.0 10.0

Products (Health and Environmental Issues) 0.045 0.374 0.0 0.0 17.0

Social Discrimination 0.003 0.056 0.0 0.0 2.0

Supply Chain Issues 0.043 0.322 0.0 0.0 12.0

Tax Evasion 0.006 0.091 0.0 0.0 4.0

Tax Optimization 0.005 0.095 0.0 0.0 7.0

Violation of International Standards 0.007 0.090 0.0 0.0 3.0

Violation of National Legislation 0.167 0.741 0.0 0.0 28.0

Waste Issues 0.017 0.148 0.0 0.0 5.0

Notes: This table reports time-series averages of cross-sectional means and standard deviations (SD), the mini-
mum, the 50th percentiles (Median) and the maximum for all ESG issues. The number of observations (N) is 
43,476.
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V.  Results

This section presents the main results of our study, the results of our series of 
additional analyses, and some additional analysis and practical implications.

1. Main Results

Table 3 shows the results for all machine learning algorithms for our baseline 
specification (i. e. without including CSI exposure). Unsurprisingly, the linear 
regression algorithm reached only a comparably low out-of-sample prediction 
accuracy of 56.31 % for adj. R2. Regularization, i. e. ElasticNet, Ridge, and Ordi-
nalRidge, did not increase prediction accuracy after all. Shrinking the weights of 
supposedly irrelevant predictors, such as in ElasticNet, even impaired prediction 
accuracy (reducing adj. R2 from 56.31 % to 44.92 %). This finding indicates that 
many of the well-documented predictors used in this study are useful for pre-
dicting credit risk and should therefore be considered in credit risk models. 
While LinearSVR is supposedly unable to capture non-linearity in the data 
(55.36 % for adj. R2), the comparably poor result for AdaBoostR is surprising 
(57.07 % for adj. R2). Moreover, our results show that more advanced ML algo-
rithms clearly outperformed linear regression. SVR with a radial basis function 
kernel and gradient boosting regression were superior to linear regression and 
the regularization techniques. Out-of-sample adj. R2 increased to 76.79 % for 
RbfSVR and 73.39 % for GBR.

Four of the more advanced ML algorithms achieved adj. R2s greater than 
80 %: Decision Tree regression, Random Forest regression, K-nearest Neighbors 
regression, and Multi-layer Perceptron regression. Random Forest regression 
achieved the highest out-of-sample prediction accuracy of all algorithms: 
89.65 % for adj. R2 and 1.02 for RMSE. This outstanding result is most likely due 
to the averaging technique of the Random Forest algorithm. Random Forest re-
gression combines the prediction of several base estimators with an ensemble 
prediction, which is less likely to over-fit the noise in the training data and thus 
to generalize better to (unseen) test data. In contrast, Decision Tree regression 
largely over-fitted the training data (adj. R2 of 99.90 % on the training data com-
pared to 80.72 % on the test data). The over-fitting tendency of Decision Tree 
regression and Random Forest regression has been documented in many previ-
ous studies (e. g. Barboza et al. 2017; Piramuthu 2006). However, Random Forest 
regression still seems to generalize best to unseen data (i. e. out-of-sample).

K-nearest Neighbors regression and Multi-layer Perceptron regression also 
seem to be suitable algorithms for predicting credit risk by using the similarities 
between different firms. After all, they reached an adj. R2 of 85.05 % and 80.35 %, 
respectively. Whereas Barboza et  al. (2017) showed that boosting and bagging 
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algorithms15 have a reasonable performance in classification-based bankruptcy 
prediction, we only found evidence for a high prediction accuracy of bagging 
algorithms in the case of regression-based credit risk prediction. However, con-
sistent with the findings of Barboza et al. (2017) for Random Forest classifica-
tion, we found that Random Forest also provides the highest prediction accura-
cy in a regression and credit risk design. Other studies have found similar evi-
dence for Random Forests, yet in different contexts than bankruptcy or credit 
risk prediction (e. g. Yeh et al. 2014; Svetnik et al. 2003).

Using the DM test, we further examined whether the prediction accuracy of 
one algorithm was significantly superior to that of the others (i. e. pairwise com-
parisons). Figure 2 displays the results for our baseline specification. Positive 
values indicate that the column algorithm outperforms the row algorithm. Only 
statistically significant values (p < 0.01) are displayed. Unsurprisingly, the regu-
larization techniques (ElasticNet, Ridge, and OrdinalRidge) did not outperform 

15  For a brief description of “boosting” and “bagging,” please see the relevant methods 
section above and Barboza et al. (2017).

Table 3
Prediction Accuracy of Machine Learning Algorithms – Baseline Model

Training Sample Test Sample

Algorithm R2 adj. R2 RMSE Algorithm R2 adj. R2 RMSE

Linear 0.5601 0.5598 2.1186 Linear 0.5644 0.5631 2.1018

ElasticNet 0.4416 0.4412 2.3868 ElasticNet 0.4508 0.4492 2.3600

Ridge 0.5601 0.5598 2.1186 Ridge 0.5644 0.5631 2.1018

OrdinalRidge 0.5526 0.5522 2.1366 OrdinalRidge 0.5562 0.5549 2.1216

LinearSVR 0.5528 0.5524 2.1361 LinearSVR 0.5548 0.5536 2.1247

RbfSVR 0.7658 0.7657 1.5457 RbfSVR 0.7686 0.7679 1.5320

DTR 0.9990 0.9990 0.1031 DTR 0.8078 0.8072 1.3963

RFR 0.9787 0.9787 0.4659 RFR 0.8968 0.8965 1.0230

AdaBoostR 0.5831 0.5828 2.0624 AdaBoostR 0.5719 0.5707 2.0836

GBR 0.7356 0.7354 1.6425 GBR 0.7347 0.7339 1.6403

KNNR 0.9093 0.9092 0.9621 KNNR 0.8510 0.8505 1.2294

MLPR 0.7923 0.7921 1.4558 MLPR 0.8041 0.8035 1.4095
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“plain vanilla” linear regression, as already suggested by the lower adj. R2 Elas-
ticNet was even outperformed by any other algorithm. However, the more ad-
vanced ML algorithms – except for AdaBoostR – yielded predictions that were 
significantly superior to those of linear regression and the regularization tech-
niques. Again, Random Forest regression turned out to offer the highest predic-
tion accuracy in pairwise comparisons. Therefore, the findings are in line with 
our results in Table 3, that advanced algorithms are superior to traditional ones.

Turning to the inclusion of CSI predictors, Panel A of Table 4 displays the pre-
diction accuracy of all algorithms testing the model that includes our first CSI 
predictor (i. e. Current RRI). The prediction accuracy of some of the algorithms 
only slightly increased when considering CSI in predicting credit risk. Panel B 
and Panel C of Table 4 support this finding of slightly increasing prediction ac-
curacy when using Peak RRI and ESG Issues as alternative measures of CSI. Due 

Note: This figure reports Diebold-Mariano test statistics comparing the out-of-sample predictions between all al-
go- rithms for our baseline specification (i. e. no CSI). Positive values indicate outperformance of the column algo-
rithm compared to the row algorithm. Only differences statistically significant at the 1 % level or better are dis-
played.

Figure 2: Statistical Significance of Prediction Accuracy – Baseline Model
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to the already high prediction accuracy of our baseline specification, most of the 
explanatory power seems to stem from the accounting- and market-related pre-
dictors. Even though previous research has shown that CSI can heavily impact 
firm performance, firm survival, and even credit risk, we did not find evidence 
that incorporating CSI into credit risk prediction considerably increases predic-
tion accuracy.

Similar to the pairwise comparison of algorithms for our baseline model spec-
ification, we also conducted DM tests for those alternative specifications that 
include CSI (i. e. Current RRI, Peak RRI, ESG Issues). The two last columns of 
Table 4 contain the results for the DM tests, which compare the predictions of 
the respective alternative specifications to the baseline specification (e. g. Cur-
rent RRI vs. baseline), holding the algorithm constant. The results were rather 
mixed. On the one hand, the more traditional ML algorithms (i. e. Linear, Elas-
ticNet, Ridge, and OrdinalRidge) mostly yielded superior predictions when us-
ing the alternative specifications compared to the baseline specification (positive 
t-stat and mostly p < 0.01). In other words, predictions improved, yet only mar-
ginally. On the other hand, no clear trend could be identified for the more ad-
vanced ML algorithms as to whether predictions improved when using the al-
ternative specifications compared to the baseline specifications (e. g. t-stat of 
−0.36 for RFR using Current RRI and t-stat of 3.85 for RFR using Peak RRI). 
The most consistent specification turned out to be Peak RRI, which yielded su-
perior predictions compared to the baseline specification in the case of all algo-
rithms – except when using DTR and GBR.

One possible explanation for our results is that our measure of credit risk (i. e. 
S&P long-term issuer credit ratings) does not yet reflect CSI exposure to a larger 
extent. Another possible explanation is that higher CSI increases the cost of cap-
ital, as suggested by Kölbel et al. (2017), instead of being reflected in credit rat-
ings. Therefore, our result does not indicate that CSI is consistently and system-
atically considered in the credit risk analyses of rating agencies. For example, 
S&P Global claims that its credit risk analyses consider ESG factors along three 
dimensions: business risk (e. g. competitive position), financial risk (e. g. cash 
flow/leverage assessment), and management and governance. However, we can-
not rule out that differently operationalizing ESG aspects between RepRisk and 
S&P Global leads to our results.16 For example, this difference in operationaliza-
tion might be due to a possibly higher weighting of the corporate governance di-
mension, whereas the environmental and social dimensions are underweighted.

16  For S&P Global’s claims about integrating ESG in credit risk analysis, please see: 
https://www.spglobal.com/ratings/en/products-benefits/products/sustainable-finance and 
https://www.spglobal.com/ratings/en/products-benefits/products/esg-in-credit-ratings#.
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Table 4
Prediction Accuracy of Machine Learning Algorithms – Baseline Model

Panel A: Current RRI

Training Sample Test Sample DM Test

Algorithm R2 adj. R2 RMSE Algorithm R2 adj. R2 RMSE t-stat p-value

Linear 0.5601 0.5598 2.1186 Linear 0.5644 0.5631 2.1018 6.71 0.0000

ElasticNet 0.4416 0.4412 2.3868 ElasticNet 0.4508 0.4492 2.3600 3.20 0.0014

Ridge 0.5601 0.5598 2.1186 Ridge 0.5644 0.5631 2.1018 6.71 0.0000

OrdinalRidge 0.5526 0.5522 2.1366 OrdinalRidge 0.5562 0.5549 2.1216 5.75 0.0000

LinearSVR 0.5528 0.5524 2.1361 LinearSVR 0.5548 0.5536 2.1247 8.08 0.0000

RbfSVR 0.7658 0.7657 1.5457 RbfSVR 0.7686 0.7679 1.5320 6.18 0.0000

DTR 0.9990 0.9990 0.1031 DTR 0.8078 0.8072 1.3963 −1.33 0.1850

RFR 0.9787 0.9787 0.4659 RFR 0.8968 0.8965 1.0230 −0.36 0.7202

AdaBoostR 0.5831 0.5828 2.0624 AdaBoostR 0.5719 0.5707 2.0836 8.95 0.0000

GBR 0.7356 0.7354 1.6425 GBR 0.7347 0.7339 1.6403 0.51 0.6129

KNNR 0.9093 0.9092 0.9621 KNNR 0.8510 0.8505 1.2294 −25.29 0.0000

MLPR 0.7923 0.7921 1.4558 MLPR 0.8041 0.8035 1.4095 7.37 0.0000

Panel B: Peak RRI

Training Sample Test Sample DM Test

Algorithm R2 adj. R2 RMSE Algorithm R2 adj. R2 RMSE t-stat p-value

Linear 0.5696 0.5693 2.0956 Linear 0.5734 0.5722 2.0799 5.78 0.0000

ElasticNet 0.4487 0.4483 2.3717 ElasticNet 0.4562 0.4545 2.3484 2.22 0.0266

Ridge 0.5696 0.5693 2.0956 Ridge 0.5734 0.5722 2.0799 5.78 0.0000

OrdinalRidge 0.5613 0.5610 2.1156 OrdinalRidge 0.5661 0.5648 2.0977 4.23 0.0000

LinearSVR 0.5632 0.5629 2.1109 LinearSVR 0.5656 0.5643 2.0990 7.06 0.0000

RbfSVR 0.7741 0.7739 1.5182 RbfSVR 0.7770 0.7763 1.5038 7.58 0.0000

DTR 0.9998 0.9998 0.0489 DTR 0.8115 0.8109 1.3826 0.68 0.4983

RFR 0.9872 0.9872 0.3612 RFR 0.9138 0.9136 0.9349 3.85 0.0001

AdaBoostR 0.5833 0.5830 2.0618 AdaBoostR 0.5768 0.5755 2.0717 2.51 0.0119

GBR 0.7356 0.7354 1.6426 GBR 0.7357 0.7349 1.6372 1.06 0.2889

KNNR 0.8816 0.8815 1.0990 KNNR 0.8086 0.8080 1.3932 −7.93 0.0000

MLPR 0.8142 0.8141 1.3939 MLPR 0.8171 0.8166 1.3618 6.12 0.0000

(continue next page)
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Figure 3 illustrates and compares the prediction accuracy of all our algorithms 
in the training and test samples.17

2.  Additional Analyses – Regression Design

We performed a series of additional analyses.18 First, we used only US data 
instead of global data. The results show that using US data increases the overall 

17  We decided only to illustrate the model using Peak RRI rather than the alternative 
CSI measures, as the model using Peak RRI achieved the highest out-of-sample predic-
tion accuracy overall.

18  The results of the additional analyses are unreported but available on request from 
the authors.

Panel C: ESG Issues

Training Sample Test Sample DM Test

Algorithm R2 adj. R2 RMSE Algorithm R2 adj. R2 RMSE t-stat p-value

Linear 0.5681 0.5674 2.0991 Linear 0.5681 0.5674 2.0991   6.99 0.0000

ElasticNet 0.4416 0.4407 2.3868 ElasticNet 0.4416 0.4407 2.3868 – –

Ridge 0.5681 0.5674 2.0991 Ridge 0.5681 0.5674 2.0991   6.99 0.0000

OrdinalRidge 0.5610 0.5603 2.1164 OrdinalRidge 0.5610 0.5603 2.1164   5.83 0.0000

LinearSVR 0.5608 0.5601 2.1168 LinearSVR 0.5608 0.5601 2.1168   7.53 0.0000

RbfSVR 0.7157 0.7152 1.7021 RbfSVR 0.7157 0.7152 1.7021 −18.39 0.0000

DTR 0.9990 0.9990 0.0988 DTR 0.9990 0.9990 0.0988 −1.18 0.2362

RFR 0.9865 0.9865 0.3715 RFR 0.9865 0.9865 0.3715 −2.21 0.0269

AdaBoostR 0.5831 0.5824 2.0624 AdaBoostR 0.5831 0.5824 2.0624 – –

GBR 0.7364 0.7359 1.6401 GBR 0.7364 0.7359 1.6401 1.30 0.1945

KNNR 0.9000 0.8998 1.0103 KNNR 0.9000 0.8998 1.0103 −7.14 0.0000

MLPR 0.8146 0.8143 1.3753 MLPR 0.8146 0.8143 1.3753 −5.98 0.0000

Notes: This table reports the three most common measures of prediction accuracy (R2, adj. R2, and RMSE) for the 
models including the CSI predictors. In Panel A, we used Current RRI as a predictor to capture CSI exposure. In 
Panel B, we used Peak RRI as a predictor to capture CSI exposure. In Panel C, we used the vector of ESG issues as 
a predictor to capture CSI exposure. The vector of additional accounting- and market-related variables and the 
vector of sector dummies are included in all models. The statistics from the Diebold-Mariano test are displayed in 
the last two columns. They test the statistical significance of differences in the accuracy of predictions compared 
to the baseline specification (i. e., the model does not capture CSI; see Table 3 and Figure 2). Positive t-stat values 
indicate outperformance compared to the baseline model. “NaN” values indicate that the difference between the 
predictions was zero, i. e., the models yielded the same predictions. This finding is not surprising since regulariza-
tion techniques, such as ElasticNet, shrink the weights from irrelevant predictors, which can render an equivalent 
or highly similar model to the baseline specification. For more information on algorithm specifications, please see 
Table A.7 in the appendix.

(Table 4 continued)
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prediction accuracy of most ML algorithms. Using Peak RRI, Random Forest 
regression again yields the highest out-of-sample prediction accuracy with 
92.53 % for adjusted R2 and 0.8682 for RMSE. The higher overall prediction ac-
curacy is presumably owed to the lower noise and the higher homogeneity in 
US data compared to global data.

Second, we tried to reduce the noise in the CSI data caused by negligible neg-
ative ESG incidents with no few (economic) consequences for the firm. More 
specifically, we followed Kölbel et al. (2017) and controlled for the reach of the 
news source in which the particular negative ESG incident was reported and for 
the severity (or harshness) of the negative ESG incident. A higher reach of the 
news source (e. g. The Financial Times vs. the Nassau Herald) and stronger se-

Note: This figure shows the prediction accuracy (adj. R2) of all ML algorithms using Peak RRI as a predictor. The 
vector of additional accounting- and market-related variables and the vector of sector dummies are included. The 
y-axis displays adj. R2 for the training sample and the x-axis shows adj. R2 for the test sample. 

Figure 3: Model Prediction Accuracy – Peak RRI
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verity (e. g. large corruption scandal spanning several geographies vs. minor lo-
cal pollution incident) are more likely to affect credit risk and thus be reflected 
in credit ratings. Therefore, we calculated interaction terms for our vector of 
ESG issues. Only negative ESG incidents that appeared in high-reach news 
sources and with high severity were considered in our ESG Issues predictor. All 
other negative ESG incidents were weighted zero. As the results show, this alter-
native specification of ESG Issues did not considerably change our results. We 
conclude that negative ESG incidents, which appeared in influential news sourc-
es and which had a severely negative impact, do not increase prediction accura-
cy either and thus are not systematically reflected in credit risk ratings.

Third, we used a time lag of four quarters instead of two quarters for our pre-
dictor variables to account for the possibility that it takes longer for CSI to ma-
terialize in credit ratings. However, a longer time lag did not qualitatively change 
our results.

Fourth, we applied a subsample analysis only using firm-quarter observations 
from the year 2015 and later, based on the observation that credit rating agen-
cies have strengthened their ESG considerations in recent years. Therefore, it is 
more likely that CSI informs credit risk prediction as reflected in credit ratings 
during this subperiod. Similar to the results for the full sample, we found that 
the prediction accuracy of some algorithms slightly improves (e. g. DTR, Ada-
BoostR, LinearSVR, OrdinalRidge, Ridge, ElasticNet, Linear). In contrast, that 
of others even slightly declines (e. g. KNNR) due to including CSI. However, in 
absolute terms, the difference in prediction accuracy between models using CSI 
predictors and those which do not is only marginal. The effect on prediction ac-
curacy is slightly stronger when only using data since 2015 compared to the full 
sample. This finding is in line with the recent efforts of credit rating agencies to 
incorporate CSI more strongly into their credit risk analyses.

Finally, we retrieved both Moody’s and Fitch credit risk data from Thomson 
Reuters to rule out that our result is driven by the use of S&P Global data. Sim-
ilar to S&P ratings, Moody’s and Fitch ratings were converted to numerical val-
ues according to the respective scale. Using Moody’s and Fitch rating data con-
siderably reduced our sample to 8,202 and 4,261 firm-quarter observations, re-
spectively. Again, the two samples were split into a training (80 %) and a test 
(20 %) sample.

The findings indicate that the prediction accuracy of traditional algorithms 
considerably declines, whereas the more advanced algorithms largely maintain 
their prediction accuracy scores. Adjusted R2s decrease considerably to only 
slightly above 20 % for most algorithms (except when using ElasticNet, which is 
even well-below 20 %). While most more advanced ML algorithms maintain 
their comparably high out-of-sample prediction accuracy, only Random Forest 
regression, K-nearest Neighbor regression, and Multi-layer Perceptron regres-
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sion achieve outstanding out-of-sample prediction accuracy close to or above 
80 % for adj. R2. This finding is somewhat surprising since algorithms like Ran-
dom Forest regression usually work best with sample sizes well-beyond 10,000. 
In our case, and despite the considerably decreased sample size, the mentioned 
algorithms maintain their prediction accuracy scores. Overall, S&P ratings are 
best explained by our models, followed by Fitch ratings, followed by Moody’s 
ratings.

3.  Predicting Investment Grade vs.  
Non-Investment Grade – Classification Design

So far, we have used a regression design to predict a credit risk continuum be-
tween 0 and 22, which possibly lacks discriminatory power in terms of distin-
guishing observations with different CSI. To alleviate this concern, we used an 
alternative classification design to predict whether a firm will be rated invest-
ment grade or non-investment grade in the future. In contrast to a regression 
design, classification predicts whether a particular status applies or not (i. e. 
a categorical decision between 1 and 0). The most common classification algo-
rithm is Logistic regression.

From both an investor’s and an analyst’s perspective, it would be very interest-
ing to investigate the prediction accuracy of ML algorithms for classifying a firm 
into investment grade or non-investment grade. The non-investment grade sta-
tus of an asset is an essential piece of information for investors and analysts alike. 
For example, credit rating decisions such as a non-investment grade status have 
signaling value for investors and may significantly impact the capital structure of 
firms (Graham/Harvey 2001; Kisgen 2006). Moreover, while CSI did not inform 
the prediction of credit risk as reflected in credit ratings in a regression design, it 
potentially informs a credit risk agency’s decision to classify a firm as non-in-
vestment grade. Therefore, we conducted an additional analysis to test whether 
our models can reliably predict the non-investment grade status of a firm two 
quarters into the future and whether data on CSI informs these predictions.

Usually, a firm with a rating of BBB – or lower has non-investment grade sta-
tus. Accordingly, we classified each firm-quarter observation with a rating of 
BBB – or lower as non-investment grade (i. e. a value of 1). All other firm-quar-
ter observations with ratings above BBB – were classified as investment grade 
(i. e. a value of 0). As for our traditional algorithms, we used Logistic regression 
(Logit) and Support Vector Classification (SVC) with a linear kernel (Linear
SVC) as our benchmark classification algorithms. As for our more advanced 
algorithms, we used SVC with an RBF kernel (RbfSVC), Decision Tree classifica-
tion (DTC), Random Forest classification (RFC), AdaBoost classification (Ada
BoostC), Gradient Boosting classification (GBC), K-nearest Neighbors classifi-
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cation (KNNC), and Multi-layer Perceptron classification (MLPC).19 Again, we 
refrained from data adjustments such as standardization, normalization, or the 
removal of outliers, except for SVC and MLPC. We used four common measures 
for prediction accuracy in a machine learning classification context (Precision, 
Recall, F1-Score, and Accuracy), which are explained in detail in Table 5.

19  Due to the similarity of most classification algorithms with the regression algo-
rithms, we refrain from further explanation. However, detailed explanations and blue-
prints of the algorithms can be found at https://scikit-learn.org/stable/supervised_learn 
ing.html.

Table 5
Additional Analysis – Investment Grade vs Non-Investment Grade

Panel A: Baseline – Without CSI Exposure

Training Sample Test Sample

Algorithm Precision Recall F1-Score Accuracy Algorithm Precision Recall F1-Score Accuracy

Logit 0.7931 0.6782 0.7312 0.7509 Logit 0.7854 0.6848 0.7317 0.7570

LinearSVC 0.8244 0.8003 0.8122 0.8152 LinearSVC 0.8188 0.8025 0.8106 0.8185

RbfSVC 0.9007 0.8740 0.8872 0.8890 RbfSVC 0.8998 0.8728 0.8861 0.8914

DTC 1.0000 0.9981 0.9990 0.9991 DTC 0.9240 0.9216 0.9228 0.9254

RFC 0.9982 0.9952 0.9967 0.9967 RFC 0.9634 0.9330 0.9480 0.9504

AdaBoostC 0.8481 0.8238 0.8358 0.8383 AdaBoostC 0.8406 0.8210 0.8307 0.8381

GBC 0.8869 0.8625 0.8745 0.8764 GBC 0.8741 0.8550 0.8645 0.8703

KNNC 0.9655 0.9596 0.9626 0.9627 KNNC 0.9281 0.9296 0.9289 0.9311

MLPC 0.9710 0.9596 0.9653 0.9655 MLPC 0.9468 0.9437 0.9452 0.9471

Panel B: Current RRI

Training Sample Test Sample

Algorithm Precision Recall F1-Score Accuracy Algorithm Precision Recall F1-Score Accuracy

Logit 0.7859 0.6686 0.7225 0.7435 Logit 0.7768 0.6677 0.7181 0.7464

LinearSVC 0.8221 0.8022 0.8120 0.8145 LinearSVC 0.8206 0.8046 0.8125 0.8204

RbfSVC 0.9026 0.8772 0.8897 0.8914 RbfSVC 0.8996 0.8750 0.8871 0.8922

DTC 1.0000 0.9993 0.9996 0.9996 DTC 0.9196 0.9242 0.9219 0.9242

RFC 0.9988 0.9953 0.9971 0.9971 RFC 0.9611 0.9277 0.9441 0.9469

AdaBoostC 0.8452 0.8241 0.8345 0.8367 AdaBoostC 0.8406 0.8251 0.8328 0.8397

GBC 0.8860 0.8601 0.8728 0.8748 GBC 0.8733 0.8519 0.8625 0.8686

KNNC 0.9334 0.8898 0.9111 0.9133 KNNC 0.8799 0.8338 0.8562 0.8645

MLPC 0.9731 0.9638 0.9684 0.9686 MLPC 0.9528 0.9460 0.9494 0.9512
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Panel C: Peak RRI

Training Sample Test Sample

Algorithm Precision Recall F1-Score Accuracy Algorithm Precision Recall F1-Score Accuracy

Logit 0.7733 0.6067 0.6799 0.7147 Logit 0.7611 0.6133 0.6792 0.7198

LinearSVC 0.8235 0.8009 0.8120 0.8148 LinearSVC 0.8201 0.8053 0.8127 0.8204

RbfSVC 0.9068 0.8785 0.8924 0.8942 RbfSVC 0.9053 0.8769 0.8908 0.8960

DTC 1.0000 0.9992 0.9996 0.9996 DTC 0.9173 0.9230 0.9201 0.9225

RFC 0.9987 0.9967 0.9977 0.9977 RFC 0.9655 0.9311 0.9480 0.9506

AdaBoostC 0.8462 0.8279 0.8369 0.8389 AdaBoostC 0.8381 0.8281 0.8331 0.8395

GBC 0.8857 0.8607 0.8731 0.8750 GBC 0.8725 0.8526 0.8625 0.8684

KNNC 0.9532 0.9440 0.9486 0.9489 KNNC 0.9179 0.9085 0.9132 0.9164

MLPC 0.9726 0.9591 0.9658 0.9661 MLPC 0.9499 0.9415 0.9457 0.9477

Panel D: Peak RRI

Training Sample Test Sample

Algorithm Precision Recall F1-Score Accuracy Algorithm Precision Recall F1-Score Accuracy

Logit 0.7768 0.6831 0.7269 0.7437 Logit 0.7709 0.6896 0.7280 0.7507

LinearSVC 0.8229 0.8028 0.8127 0.8152 LinearSVC 0.8192 0.8032 0.8111 0.8190

RbfSVC 0.8817 0.8616 0.8715 0.8731 RbfSVC 0.8705 0.8436 0.8568 0.8636

DTC 1.0000 0.9983 0.9992 0.9992 DTC 0.9211 0.9180 0.9195 0.9223

RFC 0.9984 0.9955 0.9969 0.9970 RFC 0.9594 0.9144 0.9364 0.9399

AdaBoostC 0.8492 0.8240 0.8364 0.8390 AdaBoostC 0.8385 0.8222 0.8303 0.8374

GBC 0.8873 0.8633 0.8752 0.8770 GBC 0.8753 0.8529 0.8640 0.8701

KNNC 0.9608 0.9556 0.9582 0.9583 KNNC 0.9198 0.9242 0.9220 0.9243

MLPC 0.9721 0.9763 0.9742 0.9742 MLPC 0.9264 0.9342 0.9303 0.9323

Notes: This table reports four common measures of prediction accuracy for all classification algorithms: Precision, 
Recall, F1-Score, and Accuracy. Precision is the accuracy of the positive predictions, i. e. the number of true posi-
tives (TPs) divided by the number of TPs plus the number of false positives (FPs). In this context, “the number 
of …” always refers to “the number of observations classified as … by the algorithm.” For brevity, we use the shor-
ter form. Recall is the ratio of positive observations that are correctly detected, i. e. the number of TPs divided by 
the number of TPs plus the number of false negatives (FNs). The F1-Score is the harmonic mean of precision and 
recall, i. e. the number of TPs divided by the number of TPs plus the number of FNs and FPs divided by two. Ac-
curacy measures the fraction of correct predictions. In Panel A, we used the baseline specification and thus no CSI 
predictor. In Panel B, we used Current RRI as a predictor to capture CSI exposure. In Panel C, we used Peak RRI 
as a predictor to capture CSI exposure. In Panel D, we used the vector of ESG issues as a predictor to capture CSI 
exposure. The vector of additional accounting- and market-related variables and the vector of sector dummies are 
included in all models.
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The results of our additional analysis are displayed in Table 5. In general, the 
results of the classification design are in line with those of the regression design. 
The two traditional ML algorithms, Logit and LinearSVC, exhibit reasonable 
out-of-sample prediction accuracy of 75.70 % and 81.85 %, respectively. How
ever, the more advanced ML algorithms exhibit superior prediction accuracy. 
For example, DTC and RFC have a prediction accuracy of 92.54 % and 95.04 %, 
respectively. This result is in line with results for default prediction using a ma-
chine learning classification design (Barboza et  al. 2017). Overall, our algo-
rithms show higher Precision, i. e. the accuracy of positive predictions, than Re-
call, i. e. the fraction of positive observations that are correctly detected by the 
classifier. The deep learning method MLPC has the highest Recall of 94.37 %, 
which indicates that this method reliably identifies almost 95 % of all non-in-
vestment grade firms (out-of-sample).

Moreover, we do not find that including CSI consistently increases prediction 
accuracy when classifying firms into investment grade or non-investment grade. 
The prediction accuracy of most algorithms either remains approximately the 
same (e. g. DTC or GBC) or even slightly declines (e. g. Logit or KNNC). Over-
all, Random Forest classification again dominates the other algorithms with pre-
diction accuracy between 93.99 % and 95.06 %. These results are in line with our 
main analysis. Random Forest algorithms provide the highest prediction accu-
racy for credit risk as measured by credit ratings and for classifying firms into 
non-investment grade. Moreover, including CSI in models does not considera-
bly increase either the accuracy of credit risk prediction or the accuracy of clas-
sifying firms into non-investment grade.

VI.  Contributions to Research and Practical Implications

Our research contributes to the literature and has practical implications in at 
least two ways. First, whereas previous research has relied on statistical infer-
ence, we used a comprehensive machine learning design to train models for out-
of-sample prediction of credit risk (as measured by credit ratings). Previous 
studies have primarily investigated the impact of ESG performance (e. g. Oikon-
omou et  al. 2014; Stellner et  al. 2015; Hsu/Chen 2015) and of CSI (e. g. Kölbel 
et al. 2017) on credit risk. However, they have neglected the overall prediction 
of credit risk using data on CSI and the potential of ML algorithms. The only 
exception is Dorfleitner et al. (2020), from whom our study differs by using data 
on CSI (i. e. not CSP) and a comprehensive series of machine learning algo-
rithms. Predictive models that use advanced machine learning algorithms po-
tentially add value by capturing the inherent non-linearity and complex interac-
tion effects in the data. Credit risk is potentially influenced by a vast number of 
factors, financial and non-financial, which need to be considered in modeling. 
For investors and analysts, it is vital to incorporate these factors into credit risk 
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analysis. ML techniques can help obtain the most accurate credit risk predic-
tion, especially if large amounts of data with complex relationships and interac-
tion effects are available. The resource intensiveness of credit risk evaluation 
and the importance of firm solvency for financial institutions support the da-
ta-driven machine learning approach.

Second, previous research has shown that ESG performance is relevant to 
credit risk (e. g. Oikonomou et al. 2014; Stellner et al. 2015; Drago et al. 2019). At 
the same time, major rating agencies claim that they account for ESG aspects to 
some extent in their ratings.20 However, we found that including data on CSI 
does not systematically increase the prediction accuracy of credit risk as meas-
ured by credit ratings. Therefore, our finding that CSI does not inform credit risk 
prediction is somewhat surprising. It also contrasts slightly with previous stud-
ies, according to which more environmentally and socially responsible firms are 
rewarded with higher credit ratings (Jiraporn et al. 2014; Attig et al. 2013; Kiesel/
Lücke 2019). We do not find support for the anecdotal evidence that changes in 
the ESG performance of certain firms during the period 2016 – 2018 led to 
changes in credit risk ratings on a systematic basis (Henisz/McGlinch 2019). Our 
result is more in line with research on the European market, which has found 
that higher ESG performance is not significantly related to higher credit ratings 
(Stellner et al. 2015). However, our finding holds for both a global and a US sam-
ple and is related to CSI as compared to CSP (i. e. ESG performance).

A possible explanation for the diverging results is that rating agencies tend to 
account for positive ESG performance – at least outside of Europe – but not for 
the downside risk of negative ESG incidents (i. e. CSI). Another possible expla-
nation is that the operationalization of ESG aspects by credit rating agencies 
significantly differs from our operationalization (i. e. CSI as measured by data 
from RepRisk). Our finding is also somewhat surprising in the light of results 
by Kölbel et  al. (2017), who found that CSI impacts credit risk through in-
creased CDS spreads. In contrast, our results indicate that higher credit risk due 
to CSI is not reflected in credit ratings. It seems that while the market already 
accounts for CSI, CSI does not (yet) play a major role in credit ratings. There-
fore, a potential implication for market participants is that common credit rat-
ings might not entirely reflect the environmental and societal business conduct 
risks (e. g. weaknesses in corporate governance, low product safety, or compro-
mised employee well-being) that firms are increasingly facing. These business 
conduct risks potentially entail substantial future expenses (e. g. compensation 
payments) and reputational damages.

Ultimately, then, Peak RRI adds most to prediction accuracy across algo-
rithms. In absolute terms, however, the additional explanatory power is small 

20  For a detailed discussion of this inclusion, please see above.
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compared to specifications only using accounting- and market-related predic-
tors. However, this finding likely depends on our measure of credit risk, i. e., 
credit rating data from S&P Global, Moody’s, and Fitch. In light of our results, 
and considering the potential importance of ESG issues for credit risk, it seems 
reasonable to more strongly incorporate CSI into credit risk analysis. Major 
credit rating agencies such as Fitch have recently stated that they are intensify-
ing their efforts to integrate ESG into credit risk analysis and to be more trans-
parent about integration.21

VII.  Concluding Remarks

We have investigated whether using advanced ML algorithms and data on CSI 
improves firm credit risk prediction. We therefore also tested the extent to 
which increased credit risk due to higher CSI is reflected in credit ratings. We 
found that the use of advanced ML algorithms considerably improves prediction 
accuracy for credit risk as measured by credit ratings. However, we found no 
evidence that CSI is systematically reflected in credit ratings. A long series of 
additional analyses and robustness checks corroborated our results. In an alter-
native classification design, we investigated whether advanced ML algorithms 
and data on CSI inform the prediction of a firm’s non-investment grade status 
(i. e. a credit rating of BBB– or lower). Whereas advanced ML algorithms again 
considerably increase prediction accuracy using this classification design, data 
on CSI are not consistently informative as to whether a firm is predicted to have 
non-investment grade status.

The results of our study are limited to some extent. First, the time-series avail-
ability of CSI and credit rating data is limited. As CSI data availability increases, 
training ML models will most likely yield more robust systems. These systems 
include ones that are more robust when considering time trends.

Second, studies like ours face the trade-off between using standardized and 
non-standardized predictors. On the one hand, regularizing and preprocessing 
data potentially impedes replicating and interpreting the results. On the other, 
refraining from adjustments such as standardization may yield biased and arbi-
trary results for certain algorithms. For instance, SVR and MLPR algorithms are 
highly sensitive to unscaled data. Therefore, we decided to apply standardiza-
tion where using non-standardized values would have disproportionately biased 
our results (i. e. for SVR and MLPR) but refrained from standardization where 
possible (i. e. all the other algorithms).

21  For the respective announcement by Fitch, please see: https://www.fitchratings.com/
site/pr/10058528.
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Third, even though our trained models are ready for use, the actual prediction 
output and prediction accuracy seem to vary to some extent among different 
sources of credit risk data (i. e. S&P Global, Moody’s, or Fitch). In machine 
learning, this limitation is well-known as the model dependency on the struc-
ture of learning data and further adjustments to the data or algorithms. While 
we refrained from specific data adjustments and used default algorithm settings, 
prediction accuracy will most likely vary when using alternative measures for 
credit risk.

The last limitation leads us to some avenues for future research. While CSI 
does not (yet) seem to be systematically considered in credit risk evaluations by 
rating agencies, Kölbel et al.’s (2017) findings indicated that the impact of CSI on 
credit risk is already priced in by market participants. This suggestion is sup-
ported by market-based studies, which have found a bond yield spreads-increas-
ing effect of poor ESG performance (e. g. Goss/Roberts 2011; Chava 2014). 
Therefore, future research could investigate whether ML-based credit risk mod-
els can be significantly improved when using an alternative, market-based meas-
ure of credit risk (e. g. CDS spreads). While we refrained from algorithm hy-
per-parameter tuning, future research could also test whether prediction accu-
racy might be further increased when using k-fold cross-validation and 
hyper-parameter tuning.
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Appendix

Table A.1
Variable Definitions

Type SD

Credit Risk [1; 22] measures credit risk by S&P’s long-term issuer credit ratings. 
The original ratings, which ranged from AAA to D, were con-
verted into a numerical and continuous variable (1 for AAA, 2 
for AA, 3 for A, 4 for BBB, etc.). Thus, the lowest possible rat
ing (i. e. D) resulted in a value of 22.

Current RRI [0; 100] measures current exposure to CSI, based on a proprietary Rep
Risk algorithm. This paper uses quarterly observations. Higher 
(lower) values indicate higher (lower) CSI exposure compared 
to the firm’s peers.

Peak RRI [0; 100] measures the highest level of CSI exposure over the last two 
years, based on a proprietary RepRisk algorithm. Higher 
(lower) values indicate higher (lower) CSI exposure compared 
to the firm’s peers.

ESG Issues [0; ∞] is a vector containing all 28 ESG issues from RepRisk that ulti-
mately constitute the RRI. This vector is multiplied with the 
news count for every issue and firm-quarter observation. For 
instance, if a firm experienced a forced labor incident and the 
news count was 8 in that respective firm-quarter, the ESG issue 
“Forced labor” took the value of  =1  8 8x . Summary statistics 
can be found in Table 2. For more information on the defini
tion of RepRisk’s ESG issues, please see: https://www.reprisk.
com/content/static/reprisk-esg-issues-definitions.pdf.

LIQU [∞; 1] measures liquidity. Calculated as working capital divided by to-
tal assets.

(continue next page)
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PROF [−∞; ∞] measures profitability. Calculated as retained earnings divided 
by total assets.

OPEF [−∞; ∞] measures operating efficiency. Calculated as earnings before in-
terest and taxes (EBIT) divided by total assets.

ME [−∞; ∞] accounts for a market effect on credit risk. Calculated by taking 
the natural logarithm of market value divided by long-term 
debt.

AT [0; ∞] measures asset turnover. Calculated as sales divided by total as-
sets.

ASSETS [−1; ∞] measures asset growth. Calculated as the percentage change in 
total assets between the current and last quarter.

SALES [−1; ∞] measures sales growth. Calculated as the percentage change in 
sales between the current and last quarter.

P/B [−1; ∞] measures the change in the price-to-book-value ratio. Calculat
ed as the percentage change in the price-to-book-value ratio 
between the current and last quarter.

LEV [−∞; ∞] measures leverage. Calculated as long-term debt divided by 
stockholders equity.

AGE [0; ∞] measures firm age. Calculated as the current year minus the 
year in which the firm appeared in the Compustat/SRSP data-
base for the first time. 

SIZE [0; ∞] measures firm size. Calculated as the natural logarithm of total 
assets

INTCOV [−∞; ∞] measures interest coverage. Calculated by taking the natural 
logarithm of operating income before extraordinary items 
divided by interest expense.

CAPINT [0; 1] measures capital intensity. Calculated as net property, plant, 
and equipment (PPE) divided by total assets.

(Table A.1 continued)
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Table A.2
Algorithm Hyper-Parameters

Type SD

Linear sklearn.linear_model class LinearRegression (fit_intercept=True, 
normalize=False, copy_X=True, n_jobs=None)

ElasticNet sklearn.linear_model class ElasticNet (alpha=1.0, l1_ratio=0.5, fit_intercept= 
True, normalize=False, precompute=False, max_iter=1000, 
copy_X=True, tol=0.0001, warm_start=False, positive= 
False, random_state=target_seed_global, selection=’cyclic’)

Ridge sklearn.linear_model class Ridge (alpha=1.0, fit_intercept=True, 
normalize=False, copy_X=True, max_iter=None,  
tol=0.001, solver=’auto’, random_state=target_seed_global)

OrginalRidge mord class OrdinalRidge (alpha=1.0, fit_intercept=True, 
normalize=False, copy_X=True, max_iter=None,  
tol=0.001, solver=’auto’)

LinearSVR sklearn.svm class SVR (kernel=’linear’, degree=3, gamma=’scale’, 
coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, 
cache_size=200, verbose=False, max_iter=−1)

RbfSVR sklearn.svm class SVR (kernel=’rbf ’, degree=3, gamma=’auto’, 
coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, 
cache_size=200, verbose=False, max_iter=−1)

DTR sklearn.tree class DecisionTreeRegressor (criterion=’mse’, splitter=’best’, 
max depth=None, min_samples_split=2, min_samples_
leaf=1, min_weight fraction_leaf=0.0, max_features=None, 
random_state=target_seed_global, max_leaf_nodes=None, 
min_impurity_decrease=0.0, min_impurity split=None, 
presort=’deprecated’, ccp_alpha=0.0)

RFR sklearn.ensemble class RandomForestRegressor (n_estimators=10, 
criterion=’mse’, max depth=None, min_samples split=2, 
min_samples leaf=1, min_weight_fraction_leaf=0.0,  
max_features=’auto’, max_leaf nodes=None, min_ 
impurity_decrease=0.0, min_impurity split=None, 
bootstrap=True, oob_score=False, n_jobs=None, random_
state=target_seed_global, verbose=0, warm_start=False, 
ccp alpha=0.0, max_samples=None)

AdaBoostR sklearn.ensemble class AdaBoostRegressor (base_estimator=None, n_estima 
tors=50, learning_rate=1.0, dom_state=target_seed_global)

GBR sklearn.ensemble class GradientBoostingRegressor (loss=’ls’, learning_
rate=0.1, n_estimators=100, subsample=1.0, min_samples_
split=2, min_samples_leaf=1, min_weight_fraction_
leaf=0.0, max_depth=3, init=None, random_state=target_
seed_global, max_features=None, alpha=0.9, verbose=0, 
max_leaf_nodes=None, warm_start=False)

(continue next page)
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Type SD

MLPR sklearn.neural_ 
network

class MLPRegressor (hidden_layer_sizes=(100, ), 
activation=’relu’, solver=àdam’, alpha=0.0001,  
batch_size=’auto’, learning rate=’constant’, power t=0.5, 
max iter=1000000,learning rate init=0.001, shuffle=True, 
random state=target seed global, tol=0.0001, 
verbose=False, warm start=False, momentum=0.9,  
nesterovs_momentum=True, early stopping=False,  
validation_fraction=0.1, beta 1=0.9, beta 2=0.999, 
epsilon=1e−08, n_iter_no_change=10, max fun=15000)

KNNR sklearn.neigbors class KNeighborsRegressor (n neighbors=5, 
weights=’uniform’, algorithm=’auto’, leaf size=30, p=2, 
metric=’minkowski, metric_params=None,  
n-jobs=None,**kwargs)

(Table A.2 continued)
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