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A Simple Model for Trading Climate Risk*

By Sébastien Chaumont**, Peter Imkeller**,  Matthias Müller** and Ulrich Horst***

Summary: Short term climate events such as the sea surface temperature anomaly known as El Niño
are financial risk sources leading to incomplete markets. To make such risk tradable, we use a market
model in which a climate index provides an extra investment option. Given one possible market
price of risk each agent can maximize the exponential utility from three sources of income: capital
market, additional security, and individual risk exposure. Under an equilibrium condition the market
price of risk is uniquely determined by a backward stochastic differential equation. We translate
these stochastic equations into semi-linear partial differential equations for the simulation of
which numerical schemes are available. We choose two simple models for sea surface temperature,
and with ENSO risk exposed fisher and farmer and a non-exposed bank three toy agents. By simula-
ting their optimal investment into the climate index we obtain first insight into the dynamics of the
market.

Zusammenfassung: Klimaereignisse auf einer kurzen Zeitskala, wie die Anomalie der Oberflächen-
temperatur im Ozean, bekannt als El Niño, sind finanzielle Risikoquellen, die zu unvollständigen Märk-
ten führen. Um so ein Risiko handelbar zu machen, nutzen wir ein Marktmodell, in dem ein Klimaindex
eine zusätzliche Investitionsmöglichkeit schafft. Zu einem gegebenen Marktpreis des Risikos kann
jeder Händler seinen exponentiellen Nutzen aus drei Einkommensquellen maximieren: dem Kapital-
markt, der zusätzlichen Anlagemöglichkeit und der individuellen Risikoexposition. Unter einer Gleich-
gewichtsbedingung wird der Marktpreis des Klimarisikos durch eine stochastische Rückwärtsglei-
chung eindeutig bestimmt. Diese stochastischen Gleichungen übertragen wir in semilineare partielle
Differentialgleichungen, für die numerische Lösungsmethoden vorhanden sind. Wir wählen zwei ein-
fache Modelle für die Meeresoberflächentemperatur. Dann betrachten wir einen Fischer und einen
Farmer, die El Niño- Risiko ausgesetzt sind, sowie eine Bank, die diesem Risiko nicht ausgesetzt ist.
Durch Simulation ihrer optimalen Investitionen in den Klimaindex erhalten wir einen ersten Einblick
in die Dynamik dieses Marktes.

Introduction

In recent years, a new type of financial products on incomplete markets has appeared at the
interface of finance and insurance. Its purpose is securitization, i.e. to shift certain (re-)in-
surance risks to the capital markets. The products we focus on deal with natural exterior
risks generated in particular by weather and climate phenomena. The first product of this
type was traded by the New York and the Chicago Mercantile Exchange and was called
the New York HDD swap (see Davis 2001). The demand for these products may come
from energy companies supplying gas to retail distributors. If for example the heating sea-
son in winter is unusually warm, due to a smaller volume of gas sold profits may shrink.
Another example is given by the risk due to big accumulative losses for example in farm-
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ing or fishing caused by the most well known short term climate event of the El Niño
Southern Oscillation (ENSO).

In this paper, we give a comprehensive report about a simple market model designed for
climate risk sharing of agents exposed to this risk source, or more generally risks exoge-
nous from the point of view of usual capital markets. In this simple model external risk be-
comes tradable by the key concepts of market completion in a partial equilibrium. Trading
and hedging the risk makes no use of the classical insurance concept of predicting catas-
trophic events, and then arranging the risk capital at one instant of time in case the catas-
trophic event is predicted to happen with a certain threshold probability. The dynamic hed-
ging approach we propose and describe below in more detail will rather be based upon the
innovative concept of market composition by agents exposed in a negatively correlated or
even complementary way to the climate risk. Due to the negative correlation of their expo-
sure to risk, the total welfare of the agents participating in this redistribution market will
increase. The calculations and simulations obtained so far will not be able to answer the
question whether the welfare increase of dynamic hedging of complementary interests or
the classical insurance approach’s benefits prevail. This will require more quantitative stu-
dies, and precise concepts of the prediction quality along with the correlation structure. To
illustrate our risk trading model, think of the toy agents used in this paper: a rice farmer
profiting from El Niño conditions, a fisher suffering from them, and a risk neutral bank
which is just interested in diversifying its portfolio.

The model we propose is discussed in detail in Hu et al. (2003) and Chaumont et al.
(2004). We consider an economy with a finite number of climate affected agents . In
order to describe their risk exposure in an analytically accessible way, we represent the cli-
mate (sea surface temperature) process K by simple low dimensional stochastic different-
ial equations suggested by the climate physics literature. Among them are Ornstein-Uh-
lenbeck type models, or stochastic oscillators fluctuating randomly periodically between
two meta-stable states.

The agents composing our market get a climate-exposed revenue from their usual business
described by some payoff functional Ha(K, X) depending on the climate process K as well
as on stock price process X. This stock price represents a stock market where they can buy
and sell according to their preferences, without being able to change prices. The agents aim
at hedging their revenue against random fluctuations. If they had risky payoffs g(X)
depending on the stock price X alone, they could replicate them. In other words, they could
find strategies for trading with the stock reaching g(X) as terminal wealth. This optimal
trading could then be described by the Black-Scholes formalism. In our setting, this instru-
ment is insufficient: it is impossible to replicate a climate dependent risk exposure
Ha(X, K) using only the stock. The climate process has an uncertainty inherent in the risk
exposure and modelled by a Wiener process W 2

 that is independent of the Wiener process
W1 modelling the stock market uncertainty inherent in X. The stock market is therefore in-
complete and we are well beyond the Black-Scholes realm.

In order to make hedging of the risk exposure Ha(K, X) possible, we complete the market
by constructing a special security Y modelled by means of W 2, the climate risk uncertainty
process. Together with this special security, the market possesses assets covering all rele-
vant uncertainty processes. It therefore is complete, and climate risk becomes tradable.

a I∈
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Agents active on the market may buy or sell individual amounts of this climate index ac-
cording to their random risk exposures. So the agents have three sources of income stem-
ming a) from their the risk exposure Ha(K, X), b) from trading with the stock X and c)
from trading with the special security Y . Given a particular candidate of a price process Y,
every agent chooses an investment strategy which optimizes the individual utility from his
total wealth from trading and his random income subject to climate risk. There will be a
unique price process Y* for which a market clearing for climate risk is achieved, i.e. for
which there is zero excess demand for the climate index. This pricing rule is determined
by a backward stochastic differential equation (BSDE).

Besides existence and uniqueness of the partial equilibrium it is difficult to get quantita-
tive analytical results about the model. For this reason we use numerical simulations on
the level of quasi-linear Partial Differential Equation (PDE) to obtain insight into the mar-
ket’s quality and dynamics. This becomes possible, since BSDE are related to this class of
PDE via the Feynman-Kac link.

The paper is organized as follows. In section 1 we give a brief account of the ENSO phe-
nomenon and its economic consequences. Reduced ENSO models we employ for our
analysis are explained in section 2, while the market model based on completion and par-
tial equilibrium is discussed in 3, and in more mathematical details in 4. In 5, we obtain
some quantitative insight into the market dynamics by treating some toy examples in nu-
merical simulations. Section 6 suggests an equilibrium approach to pricing temperature
bonds and outlines avenues for future research.

1 Economic Consequences of the ENSO Phenomenon

The ENSO phenomenon has been known to Peruvian fishermen before the arrival of the
Spaniards through its spectacular economical effects. The normal large scale of atmos-
pheric pressure distribution over the Southern Pacific shows a zone of high pressure over
the eastern part near the South American coast, while a zone of lower pressure prevails
over the western part of the ocean. This pressure difference on sea level is expressed in the
so-called Southern Oscillation Index (SOI) which is usually positive. Positive SOI forces
trade winds to blow east to west. At randomly periodic times – every 3–8 years (the El
Niño years) – however, the SOI becomes negative forcing the trade winds to relax or even
blow in the reverse direction. Ocean currents are largely influenced by trade winds at sea
level. In particular, the Humboldt Current along the South American coast may be affec-
ted. It normally transports cold water northward. During an El Niño event, the relaxation
of trade winds allows warm water to appear on the surface of the Southern Pacific near the
South American coast (see Figure 1).

The effects of this change of the sea surface temperature on marine life are tremendous.
The trade wind shift disrupts the upwelling of oxygen and nutrient rich cold water, one of
the basic conditions for dense concentrations of marine life. Let us give some numbers
first for the local effect on the Peruvian fishing industry. As in most developing countries
in the tropics with economies depending largely on few branches for example in food pro-
duction, the sensitivity to climatic fluctuations is very high. According to a study of the
World Resources Institute (1994), El Niño contributed to the collapse of the Peruvian fish-
ing industry. From the early 1950s through 1971 the harvest increased, peaking at more

FOR PRIVATE USE ONLY | AUSSCHLIESSLICH ZUM PRIVATEN GEBRAUCH

Generated at 216.73.216.131 on 2025-11-20 17:03:50

DOI https://doi.org/10.3790/vjh.74.2.175



178 DIW Berlin

Sébastien Chaumont, Peter Imkeller, Matthias Müller and Ulrich Horst

than 12 million tons per year. With the arrival of the 1972/1973 El Niño, a disastrous drop
of the harvest to 2.5 million tons was recorded (see Figure 2).

The consequences of this distortion of ocean currents due to changes in the SOI are much
more global than one may conjecture at first glance. The change of the tropical Pacific sea
surface temperatures induced by the fluctuation of trade winds affects the atmosphere in
turn directly by causing convection. Dense tropical rain clouds are created which, besides
increasing the amount of precipitation the western hemisphere receives, distort the atmos-
pheric air flow in altitudes of 5–10 km above sea level. One global pattern becomes clear-
ly visible: in El Niño periods, rain areas usually centered above Indonesia and the far
western Pacific move eastward into the central Pacific, which affects waves in the tropos-
pheric air flow causing unusual weather over many regions of the globe (see Figure 3).

The climatic effects of ENSO create globally and even locally groups of possible agents
on markets which are affected in a very different, sometimes even complementary, way.
Let us illustrate this by giving some examples. As explained above, American fishing ind-
ustries from Peru to Canada are strongly affected during El Niño years by seriously drop-
ping catch numbers. Quite opposite changes are observed on the other “pole” of the South-
ern Oscillation. According to Gaol and Manurung (2000), catch numbers for big eye tuna in
the South Java sea waters, one of the most important tuna fishing regions of the world, du-
ring El Niño periods increase by about 30 percent, due to an opposite effect on the sea sur-
face temperatures in the Western South Pacific (see Figure 4). Another pair of groups of
economic agents with complementary interests is given by farmers and fishers even in the
same national economy. Warm El Niño years are unfavorable for fishers for the reasons gi-
ven, but may be favorable to farmers in parts of the country normally dry due to increased
amounts of precipitation. Cold years usually following in the heels of El Niño years are
welcomed by fishermen, but not by farmers, because of droughts and crop failures. For ex-
ample, rice and cotton, two of the primary crops grown in Northern Peru, are highly sensi-
tive to the quantities and timing of rainfall.

Figure 1

El Niño Versus Normal Conditions

Source: NOAA.
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2 Some Simple ENSO Models

For the conceptual models we have in mind that are designed to distribute the ENSO risk
or more generally any market external risk among affected agents, we need simple models
able to describe the main features of the climate process involved. In our case this is the
random process describing the sea surface temperature in the Southern Pacific. It is usual-
ly modeled as a one-dimensional stochastic process. The reduced physical models it origi-

Figure 2

Peruian Anchoveta Catch Rates

Source: www.fao.org
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Figure 3

Precipitation in Peru and El Niño 

Source: tao.atmos.washington.edu
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nates from usually lead to finite dimensional stochastic equations and describe some non-
linear interaction between finitely many physical quantities including the local
temperature. There are around 15 reduced models for ENSO, of which we briefly sketch 3.
For example, the stochastic differential equation model by Barcilon, Fang and Wang
(1999) describes a nonlinear interaction between two physical quantities: the thermocline
depth in some area of the South Pacific, i.e. the depth of the surface layer h of the ocean
that can be considered as physically active, and the sea surface temperature K, with a two
dimensional stochastic perturbation (W1, W2

) interpreted by the wind forcing of the sea
surface. The equation is given by

where a1, ·· , c2 are real parameters. The system turns out to be an autonomous nonlinear
stochastic oscillator which in some parameter regimes acts as a stochastically perturbed
bistable differential equation with an intrinsically defined periodicity. Typical trajectories
of the temperature component K relevant for our purposes show stochastic bi-stable
behavior (see Figure 5).

Most of the time they fluctuate in the vicinity of one or the other of two meta-stable equi-
libria, interrupted by spontaneous rapid transitions between the domains of attraction of
these states. The transitions follow some randomly periodic pattern, which actually is the
reason why they are considered as depicting the qualitative behavior of the temperature
evolution of the Pacific sea surface characteristic for ENSO. For simulation purposes later,
to retain these qualitative features, we take a one-dimensional Stochastic Differential

3 1
1 1 1

3 2
2 2 2

,

,

t t t t t

t t t t t

dK a K b K c h dW

dh a h b h c K dW

= − + +

= − + +

Figure 4

„Skipjack“ Tuna Catch Rates

Source: Nature, 389 (1), 716 (Figure 1).
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Equation (SDE) driven by a Brownian motion. It describes the motion of a state variable
traveling through a bi-stable potential landscape, with an explicit periodic dependence of the
potential shape creating a non-autonomous stochastic system.

Our second example (see Penland 1996) comes from a 15-dimensional linear SDE of the
Ornstein-Uhlenbeck type

with a 15 × 15-matrix B with non-trivial rotational part and entries determined by satellite
measurements, and a stochastic driving term of intensity σ. This equation is obtained from
an empirical orthogonal function development fitted to time series of observations over
several decades of recent climate history. This fitting shows that 10–20 orthogonal
functions are needed, which leads to the dimensionality of the linear Ornstein-Uhlenbeck
type stochastic equation. It appears to be the reduced model most frequently used for
ENSO predictions. Mathematically it creates a diffusion with nontrivial rotation numbers
implying random periodicity for the sea surface temperature variable K which can be gen-
erated through the vector X. To retain the qualitative features of the development of K for
simulation purposes, we may describe it as a simple mean-reverting linear SDE with an
additional deterministic periodic forcing. 

A third, very simple but equally interesting qualitative example was discussed by Suarez
et al. (1988) and by Battisti (1989). Here, the feedback on the temperature exerted by the
thermocline depth in the first model is short-cut and leads to a onedimensional stochastic
differential equation with time delay of the form

Here ∆ is a fixed delay length, a, b, c real parameters, and W again a Brownian motion de-
scribing wind forcing of the sea surface (see Figure 6).

The delay effect in this equation may also be interpreted alternatively. Variations in the
thermocline depth near the South American coast triggered by the ENSO rise of sea sur-

,t t tdX BX dt dWσ= +

3[ ] .t t t t tdK aK bK cK dt dW−∆= − + +

Figure 5

Bistable SST Process

Source: Baricilon et al. (1999).
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face temperature create Kelvin waves that ravel across the Pacific, get reflected at the
Asian coast, travel back, and impact the system again with its state delayed by the total
travelling time.

After setting up a simple financial market model to deal with distributing ENSO risk in a
way considered as optimal by the individual agents interested in trading it, we do numeri-
cal simulations of their optimal investment strategies. The climate component we use in
these simulations, besides mean-reverting Ornstein-Uhlenbeck processes, will be the
above mentioned one-dimensional non-autonomous stochastic hopping between two
meta-stable states of a diffusion travelling in a simple potential landscape with two wells,
the relative depth of which alternates periodically. This model constitutes the paradigm of
stochastic resonance. See Herrmann et al. (2003b) for a review. More formally, its main
component is a potential function U with a double well, for example

 

The diffusion process K given by the SDE

models temperature in a bi-stable environment. For the noise intensity σ and the periodici-
ty parameter Q chosen appropriately, the trajectories of K are almost periodic, with a random
periodicity fluctuating around T (see Figure 7).

3 An Equilibrium Model for Risk Trading

We now explain the market model we create in order to enable agents whose total income
depends on ENSO to relocate their individual risk to other parts of the market. We consid-
er an economy with a finite number of small agents a  I, i.e. agents unable to influence
the price dynamics of the market, represented for instance by individual farmers or fishers,
banks, or insurance companies. The model only allows for a redistribution of agents’ indi-
vidual risks, optimal with respect to their individual preferences. The main advantage of
this model is that the market is ideally composed of agents with complementary interests.
The principal idea is that a redistribution of risk among them may be better than a classical

4 2

( ) , .
4 2

k k
U k k= − ∈

2
( ) sint t t tdK U K dt Q K t dW

T

π σ ′= + + 
 

∈

Figure 6

Delay Model for SST

Source: Own figure.
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insurance approach in which the prediction of the risky event causing high accumulative
losses is used for adjusting risk capital for instance. In fact, climate events usually are em-
bedded into nonlinear models, for which the frequently used linear prediction mechanisms
have considerable shortcomings. At this place, we should mention that our model is able
to deal with any risk source located in the exterior of a classical stock market.

Our agents are typically exposed to a climate process K described by one of the simple
models discussed in the previous section. For our simulations we shall use the phenome-
nological randomly periodic bi-stable temperature process.

The agents composing our market are allowed to have three sources of income, and trade
continuously within a time interval [0, T]. To be able to realize all of these components in
the simplest possible setting, we fix a stochastic basis

composed of a two-dimensional Wiener space (W 1, W 2). Think of W 1 as describing the
uncertainty inside a usual stock market, while W 2 is the driving uncertainty in the cli-
mate process K.

Firstly, the agents can trade on a financial market. In the simplest possible case which we
are going to sketch, the financial market consists of a bond and a risky asset. We take the
bond as a trivial constant process with interest rate 1, and assume that the stock price pro-
cess X is of the type of a geometric Brownian motion. Formally, it is determined by the
stochastic differential equation

where the drift b X and the volatility σ X are smooth random functions, that are constant in
the classical case. Following usual terminological habits, the process θ can be called the
price of market risk.

1 2
0( , ( ) , , ( , ))t t TF P W W≤ ≤Ω

1 1[ ] [ ],X X X

t t t t t t t t t
dX X b dt dW X dW dtσ σ θ= + = +

Figure 7

Brownian Diffusion in a Double Well Potential

Source: Own figure.
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The second source of income of agent a is a risky individual function Ha(K, X) determined
by his exposure to climate K given by

and also depending on the stock price process X. In the simplest case, we only think of
shuffling climate risk within the market of affected agents. For our simulations in this set-
ting, we consider a toy market with two or three toy agents, represented by ENSO affected
farmer (farming company) and fisher (fishing company), plus eventually a bank not directly
exposed to climate. Consequently, three typical types of qualitative risk exposure will be
considered. Recall our model climate process K showing randomly periodic bistable
behavior by hopping between a low (K1) and a high (K 2) meta-stable state. The former one
corresponds to usual conditions for sea surface temperature of the Southern Pacific, while
the second one represents ENSO conditions. So the fisher may have his temperature of op-
timal income near the lower equilibrium, while the farmer might profit more from higher
precipitation rates at the higher temperature equilibrium. This in particular means that the
fisher profits from temperature values under which the farmer suffers most, and vice ver-
sa. The exposure of the bank is taken to be independent of K. More formally, we arrive at
the following simple exposure models.

Fisher. Take a fisher f  I that makes most profits if the temperature is near K 1. We thus
can describe his income H f during the period [0, T] qualitatively by

where ϕ f is a positive function taking its global maximum in K1, for example (see
Figure 8)

Farmer. The (rice) farmer is taken to have an exposure of the same type as the fisher. The
optimal income is just obtained at K2, the second meta-stable point of a bi-stable process
K. The income of the farmer may therefore be described by

where ϕ r is a positive function taking its global maximum in K 2, for example

If we work with a bi-stable K, we see immediately that farmer and fisher have com-
plementary interests, and therefore are likely to profit from trading the climate risk among
each other.

Bank. As an additional agent, we consider a bank b whose profits only come from its portfolio
management from investment on the financial market, and which participates in the clima-
te risk share only to diversify its portfolio. So its exposure functional will be the trivial
H b = 0.

2 ,K K

t t t t
dK b dt dWσ= +

∈

0
( ) ,

Tf f
sH K dsϕ= ∫

2
1( )( ) .k Kf k eϕ − −=

0
( ) ,

Tr r
sH K dsϕ= ∫

2
2( )( ) .k Kr k eϕ − −=
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Due to the presence of the uncertainty factor W 2 which is independent of the uncertainty
factor W1 governing the stock market, the risks represented by Ha cannot be hedged on the
stock market alone: we face a typical incomplete market situation. We deal with this prob-
lem by a technique of market completion. We introduce and add to the market a security Y,
through which climate risk becomes tradable and which therefore acts as the third source
of income. Agents active on the market may buy or sell individual amounts of this climate
index according to their random risk exposures. The price process for this climate index of
course has to be driven by the climate uncertainty. Formally, Y is again described by a geo-
metric Brownian motion type process given by the equation

with smooth drift and volatility processes bY , σ Y. Following and extrapolating general
habits, we shall call η the price of climate risk. Of course, this price is not fixed from the
beginning, but has to be determined by the dynamics of the market, i.e. by a market equi-
librium in which all the agents’ individual preferences are respected, and optimized.

We can proceed in two steps to achieve such an equilibrium. Suppose first that a possible
candidate η for this price of climate risk is given. Now every agent a  I trades on the
completed market, so that his individual preferences are optimally fulfilled. This will lead
him to an individual optimal investment strategy. We describe the preferences by an expo-
nential utility function with individual risk aversion, and assume that the agent optimizes
this utility from terminal wealth obtained through his three sources of income. To achieve
a market equilibrium in a second step, we now have to choose a particular η* for which, if
each agent has acted optimally according to the rules of the first step, the market is cleared
of the amount of climate index Y available. This equilibrium price of climate risk η* is
uniquely determined, as will be further discussed. Hence in our model the external risk dy-
namically determines in a unique way the market price of risk of the climate index Y via
the risky incomes, the preferences and the partial market clearing condition.

2 2[ ] [ ]Y Y Y
t t t t t t t t tdY Y b dt dW Y dW dtσ σ η= + = +

∈

Figure 8

Risk Exposure for Fisher (left) and Farmer (right)

Source: Own figure.
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4 The Market Dynamics and its Equilibrium

Let us now explain in a somewhat more detailed way how the equilibrium of our climate
risk trading market is obtained. First of all, we have to make precise the individual agents’
trading according to their preferences. Each agent a  I is supposed to be endowed with
an initial capital . If a possible candidate η for the equilibrium price of climate risk
is fixed, he invests in the market including the climate index, and to do so, he uses admis-
sible trading strategies . This basically means that the wealth processes,
resulting from investment along these strategies, are well defined. π X is the proportion in-
vested in the financial market asset X, while πY is related to investment into the climate in-
dex Y. Therefore a’s wealth process is given by the stochastic differential equation

Each agent a, by acting on the trading strategies π available to him, wants to maximize the
expected utility of the sum of the terminal wealth from investment into income sourc-
es X and Y , as well as the risky income H a subject to climate exposure. His preferences
are described by an individual exponential utility function

with individual risk aversion coefficient αa > 0. Now a tends to maximize his terminal
wealth measured by exponential utility. In mathematical terms, he wants to attain

Under simple assumptions (see Hu et al. 2003), this quantity can be computed via well
known techniques based on duality and Legendre transforms for U a. See Karatzas, Le-
hoczky and Shreve (1987) or Kramkov and Schachermayer (1999). They are most easily
applicable, if applied from the perspective of the risk neutral measure Qη under which the
world is seen in the direction of the the drifts (θ, η) figuring in the price processes (X, Y).
In other words, under Qη, the processes

are Brownian motions. Under regularity assumptions verified in our context, it is well
known that Qη is absolutely continuous for P, and the density is given by

Under Qη, the optimal individual utility can be calculated via duality, and the optimal
strategy is described using conditioning. We have

where λa is determined by initial wealth, more precisely by

∈
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The optimal income agent a obtains from trading in the two securities and his exposure to
external risk therefore depends on the market price of external risk η. Denote the optimal
trading strategy of agent a by . Since Zη is exponential, and
the formula for the computation of optimal utility involves taking logarithms, a formula
comparing the terminal income from the three sources due to optimal investment and the
density structure reads

We conclude that each individual agent’s maximal utility from terminal wealth depends on
the process parameter η, the price of climate risk. To determine a unique price of risk η*
under which the market reaches an equilibrium for which every agent obtains his maximal
income we impose a partial market clearing condition. It states that the total investment

 in the insurance asset satisfies the condition

We use this condition in (5) by summing it over a ∈ I. Then, to find η* and the cor-
responding unique risk neutral measure Qη*, we have to extend the resulting equation dy-
namically to all times t ∈ [0, T]. As shown in (Hu et al. 2003), Theorems 3.3 and 3.5, η*
emerges as the solution of a nonlinear BSDE (backward stochastic differential equation).
More precisely, with the abbreviations

we are led to a nonlinear BSDE of the form

to be solved for the process (h, z1, z2). It is shown in (Hu et al. 2003) that this equation
possesses a unique solution which yields a unique partial equilibrium η* of the market.
Conversely, if the market has a partial equilibrium, is is given by a (unique) solution of the
BSDE (7). This approach uses results from Kobylanski (2000). This settles existence and
uniqueness questions for solutions of the climate risk securitization problem in a partial
market equilibrium. Apart from this, it is difficult to derive analytical results, for instance
about structure properties of the equilibrium price, or the dynamics and quality of the mar-
ket.
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5 Numerical Simulation of the Market

In this section we add a brief discussion on how to compute and simulate the optimal in-
vestment strategies π a,η,Y into the climate index Y in equilibrium. We shall look at simple
scenarios of exposure of few agents to climate risk. We know from the previous section
that the equilibrium price can be obtained as the solution of a BSDE with quadratic non-
linearity. Yet, the numerical analysis of BSDE is still in its infancy (see for example Bou-
chard et al. 2004). Therefore, we chose to transfer our stochastic simulation problem into a
problem of simulating non-linear PDE. In fact, via the generalized Feynman-Kac formal-
ism, BSDE are associated with systems of linear or semi-linear parabolic partial differenti-
al equations. Their solutions exist in general in the viscosity sense, much as in Chaumont
(2002). In the simple situations we consider, they turn out to be classical. We use newly
developed numerical schemes for non-linear PDE from Chaumont (2002) to approximate
and simulate them for Ornstein-Uhlenbeck type or bistable diffusion climate processes,
and the risk functionals for fishers, farmers and bank as described in section 3. This way
we obtain first information on the dynamics of such a market which will, if not quantita-
tively, be of interest at least for qualitative issues.

Here is a brief outline of the link between systems of forward-backward stochastic differ-
ential equations and quasi-linear PDE, which in the linear case boils down to the usual
Feynman-Kac formalism. Let  is the family of diffusion pro-
cesses starting in x at time t, given by the stochastic equations

with infinitesimal generator

Let F be a smooth function of the real variables x, y, z, which is taking the role of the non-
linear part. Suppose that a smooth function υ solves the nonlinear PDE

Then, if we put

the pair (Y t,x, Z t,x) solves the nonlinear BSDE

In general, υ is only a viscosity solution. In the case of our climate risk trading, we have
F(υ, z) = ½ z2. Using this link, we transform the BSDE of the previous section into the asso-
ciated PDE. Then we employ numerical schemes approximating the solutions of these
parabolic quasi-linear PDE. Following Chaumont (2002), a method initiated by Barles et
al. (1991) based on the well known stability results for viscosity solutions (see Crandall et
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al. 1992, Barles 1994 for a general presentation) will be applicable to our schemes and al-
low to simulate optimal investment strategies of some toy agents in a simple and small
market.

5.1 Toy Models

We use the following models.

Model A

The time horizon is chosen to be T = 2. We use an Ornstein-Uhlenbeck process to describe
the climate process K, with the following coefficients:

Here we consider only two model agents, a fisher and a bank as described in section 3.
The fisher’s random income function is

with ϕ f (k) = 5 exp (–10k2), for all  This means that the optimal temperature for
the fisher is normalized to be 0. The bank has no risky income, i.e. Hb = 0. We assume that
each agent uses the risk aversion coefficient α f = αb = 1.

Model B

The temperature is now modeled by a periodically forced bi-stable temperature process
with coefficients

See Figure 7 for a sample path of this process.

Again, we choose T = 2 for the time horizon, i.e. 2 periods of the temperature process.
This process is close to the high meta-stable equilibrium K 2 = 2.5 for t ∈ [0; 0.5] ∪ [1; 1.5]
and symmetrically close to the low value K1 = -2.5 for t ∈ [0.5; 1] ∪ [1.5; 2]. Again we
consider only two agents, a fisher and a farmer with respective income

where the optimal temperature is K1 = –2.5 for the fisher and K2 = 2.5 for the farmer,
which coincide with the bistable states of the temperature process. We again assume that
each agent uses the risk aversion coefficient α f = α r = 1.
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Model C

This model uses the same characteristics as model B except for the time horizon, which is
now chosen to be T = 3/2, i.e. 3 half periods of the temperature process K. This gives an
advantage to the farmer, since the temperature spends 1 unit of time i.e. 2/3 of the trading
interval near the meta-stable state favorable for the farmer, and only 0.5 units of time near
its low meta-equilibrium favorable for the fisher.

In all the models, the share price is a geometrical Brownian motion with very strong coef-
ficients bS = 1 and σ S = 1.

5.2 Simulated Optimal Strategies 

Since only two agents are active on the market, the local equilibrium condition (6) implies
that at each time t the entire quantity of Y sold by one agent is bought by the other, i.e.
π f, n*, y = π b, n*, y in model A, or π r, n*, y = π f, n*, y in models B and C.

Therefore it will be enough to show diagrams of the strategy of one agent (fisher in model
A and farmer in models B and C).

We show the optimal strategies as functions of t (on the period [0,1]) and the current tem-
perature Kt . The diagrams also display the optimal amount of money to be exchanged bet-
ween the agents, from the selected agent’s point of view.

5.2.1 Model A

Here we only show the fisher’s optimal strategy π f, n*, y. At the optimal temperature for
fishing Kt  = 0, the fisher makes his maximal profit, and we observe that there is no ex-
change of risk trading money. As soon as the temperature grows a little, the fisher has to
buy a certain quantity of Y from the bank. This exchange will bring security to the fisher
and profits to the bank.

5.2.2 Models B and C

We only show the farmer’s optimal strategy π r, n*, y. In our diagrams, we see that the farm-
er invests in Y as long as the temperature is high in the first half period [0,0.5], i.e. an in-
terval that favors him, and sells Y to the fisher as long as the temperature is low, for t 
[0.5, 1], i.e. when he needs money. This corresponds well to the intuition that the agents
have an interest to share their risks by exchanging money this way. The qualitative differ-
ence between models B and C is not big. We just observe that the farmer invests a little
more than the fisher.

6 Outlook: Equilibrium Pricing of Climate Bonds

This section briefly illustrates how the approach of market completion can be extended to
pricing and hedging weather sensitive securities. Insurance companies have long provided

∈
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protection against extreme meteorological events. While these companies have a variety
of instruments available to hedge their asset portfolios, until recently the only way to
hedge their underwriting risk was to lay off a part of it with reinsurers. Despite its desira-
ble characteristics, traditional reinsurance has its limitations. Insurance companies too of-
ten retain large exposures to catastrophic events which can easily overtax individual com-
panies. For instance, in the 1990s a devastating earthquake in Northbridge (CA) left nine
insurance companies bankrupt, and two large California insurers unwilling to further write
earthquake coverage.

Insurance companies trying to transfer their climate related risk to capital markets need to
transform non-tradable risk into tradable financial securities. One option is to issue bonds
whose terminal payments (K) depend on some climate process K. Such a bond will
typically be traded among agents exposed to climate risk and possibly by institutional in-
vestors seeking to diversify their portfolio by means of financial securities that have no
correlation with capital market indices. Pricing climate-related securities does not follow
actuarial approaches characteristic of insurance contracts, but is rather based on financial
valuation principles. However, these securities are typically written on non-tradable assets
such as temperature indices. They contain uncertainty components independent of the
ones inherent in the market’s risky assets, and therefore escape tradability through the lat-
ter, making the market incomplete. This renders the traditional Black-Scholes framework
based on market completeness inappropriate a benchmark model for pricing and hedging
weather derivatives. In addition, the market for climate derivatives is usually illiquid. One
should thus bring in techniques from equilibrium theory when pricing weather bonds.

IH

Figure 9

The Optimal Strategy for the Fisher (Model A)

Source: Own figure.
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Given a market price η of climate risk, the bond price  at time t is given by the bond’s
conditional expected terminal payoff,

where the expectation is taken with respect to the risk neutral pricing measure  under
which W2 is a Brownian motion with drift η. Assuming that the bond completes the mark-
et and that the agents’ preferences can be described by exponential utility functions, opti-
mal trading strategies  in the bond exist. In equilibrium, the market for the
bonds clears, i.e., in equilibrium the market price of risk η∗ satisfies

 

and the bond price process is given by (11) with η = η∗. By analogy to the models de-
scribed in Section 4, the process η∗ can be characterized by the solution of a BSDE. While
it is an open problem to state general conditions on the bond’s payoff structure and the
agents preferences and risk exposures that guarantee that the additional security completes
the market, in certain situations this assumption can indeed be verified. In the simplest
case we may think of an insurance company selling protection against unusually warm
temperatures during the holiday season to operators of ski resorts at some premium P. If at
some predetermined date T the temperature exceeds a certain threshold k, the policy hold-
er is entitled to a cash payment C proportional to KT - k up to a maximal amount propor-
tional to , i.e.,

tBη

(11)[ ] ,
t t I
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Figure 10

The Optimal Strategy for the Farmer (Model B)

Source: Own figure.
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One possibility of laying off some of the insurance risk to financial markets consists in is-
suing a bond with terminal payoff

 

Simplifying even further, we assume that the temperature process K is modeled by a
mean-reverting Ornstein-Uhlenbeck process of the form (10) and that the bond is traded
among farmers a ∈ I that suffer from a financial loss Ha(K) if the temperature KT falls be-
low some threshold k0. More specifically, these agents are exposed to a financial loss of
the form

where k0 < k1. Since HI is negatively correlated to the agents’ income, their risk exposure
can be reduced by trading the newly issued climate bond. Using modifications of argu-
ments given in (Müller 2005), one can indeed show that the bond with terminal payoff HI
completes the market and that a unique equilibrium pricing measure  exists under
which the bond price process takes the form (11). An extension of our equilibrium ap-
proach to more general climate securities such as HDD swaps and the question of how to
optimally design the bond’s payoff structure remains a topic for future research.

( ) ( ){ }: .T TC c K k K k
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( ) ( ) ( ){ }0 1a a T TH K c k K k K
+ += − − −

*Qη

Figure 11

The Optimal Strategy for the Farmer (Model C)

Source: Own figure.
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