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I. Introduction

Credit risk management is a central task for commercial banks. Within
a quantitative approach, the key variable in quantifying credit risk is the
probability of default (PD), which one may assign to a specific obligor or
to a certain rating category. The focus on the PD may be either as consid-
ering it to be an output variable or an input variable. The former is re-
lated to the extensive research on credit risk modelling, where highly so-
phisticated models are formulated to predict the PD of individual obligers
or entire portfolios. The latter is more related to the allocation of eco-
nomic and regulatory capital and risk-adjusted pricing. When treating
the PD as an input, it may be model-based or estimated from actual de-
fault history. If it is estimated from historical data two natural questions
arise: (i) How is the PD estimated?, and (ii) How good is this estimate?1

The issue of assessing the reliability of PD estimates has only recently
received heightened attention in the academic literature.2 Not at least
due to the revised framework of the Basel Capital Accord (Basel II).3

Under Basel II, banks may choose to apply an internal ratings based
(IRB) approach to assess the regulatory capital requirement needed to
cover their credit risk. Basically, the (foundation) IRB approach consists
of a risk-weight function which is defined as a function of the PD. How-
ever, little is said about how to estimate this PD and how to deal with
estimation uncertainty.4

Kredit und Kapital, 41. Jahrgang, Heft 2, Seiten 217–238
Abhandlungen

1 Obviously, the issue of estimation precision is also present in the model-based
PD, since any model requires some input data, but we will not focus on this more
involved problem here.

2 See Christensen et al. (2004), Hanson/Schuermann (2006), Stein (2003), Pluto/
Tasche (2005).

3 BCBS (2006).
4 BSBS (2006), Sec. 451 tells us that: “In general, estimates of PDs, LGDs, and

EADs are likely to involve unpredictable errors. In order to avoid over-optimism,
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This issue is especially relevant for banks with small portfolios, as it is
the case for the majority of regionally active banks. Note, that exactly
for those banks the standard approach, which relies on external ratings,
is hardly applicable since their portfolio will only contain few if any ob-
ligers with a rating from a major rating agency. But even if we consider
banks with a reasonable large portfolio, the distribution across rating ca-
tegories is far from uniform, so that some categories – notably the low-
risk categories – contain only a small number of data points. BBA et al.
(2004) for example report, that among the seven largest UK banks, 48%
of corporate assets will suffer from insufficient default data to give a sta-
tistically significant estimate. For other asset classes, like sovereigns and
banks, percentage figures are even worse, being 90% and 62% respec-
tively.

In this paper, we provide an assessment of the PD estimation uncer-
tainty for different credit portfolio structure and size. The usual way to
quantify the “likely range of errors” is to calculate statistical confidence
intervals, i. e. upper and lower limits, that cover the true unknown para-
meter with a certain given probability. The length of the confidence in-
terval depends on the actual estimate, the chosen confidence probability
and most notably on the sample size. And as intuition suggests, the inter-
val will be shorter for larger samples. Therefore, for a given PD estimate
of a certain rating category and given the number of observations in that
category, one can show how reliable this estimate is in terms of calculat-
ing the length of the confidence interval. As the PD estimation uncer-
tainty is especially important in the context of Basel II, we give an eco-
nomic taste for the estimation uncertainty by calculating the regulatory
capital requirement at the upper and lower limits.5

Furthermore, it is important to recognize that confidence intervals are
not unique, i. e. there is not one single way of constructing interval esti-
mators, but several alternatives are available. Thereby, the most common
approach consists of inverting a test statistic. In particular, the so-called
Wald interval is obtained by inverting a test statistic based on the normal
distribution. Besides test statistic inversion, there is the Bayesian ap-
proach, which assumes a prior distribution for the parameter and then
uses the observed data to obtain the updated (posterior) distribution. The

218 Jochen Lawrenz

a bank must add to its estimates a margin of conservatism that is related to the
likely range of errors.” But what exactly “margin of conservatism” and “likely
range of errors” means, is left open to interpretation.

5 See also Rösch (2005) for the impact of estimation error on regulatory capital.
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Bayesian approach necessitates the choice of the prior distribution and
thus reflects the experimenter’s beliefs.6 Within this approach, we dis-
cuss the so-called Jeffrey’s interval.

Discussing the impact of interval choice is not only an theoretical is-
sue, but is also of practical importance. For example, OeNB (2004), a
publication by the Austrian central bank (OeNB), which gives an outline
on the validation of rating systems recommends to use the Wald interval,
unless the sample size is small, in which case the Clopper-Pearson inter-
val should be used. Our contribution should help to clarify if this is an
adequate recommendation.

Our contribution adds to the growing literature on PD estimation.
Stein (2003) gives a simple but instructive example about the accuracy of
probability estimates and especially poses the question of how large a
data set needs to be in order to give reliable estimates. However, he lar-
gely relies on the normal approximation to the binomial distribution,
which provides doubtful results as will be discussed later. Höse/
Huschens (2003) and Huschens (2006) also use the asymptotic property of
the binomial distribution but consider correlated default events in the
form of the one-factor model underlying the Basel IRB approach. They
show that confidence intervals in the correlated case are significantly
wider. Pluto/Tasche (2005) address the issue of PD estimation if there is
no or few default events in the data set. They suggest a most prudent es-
timation principle, which they interpret as estimating PDs by upper con-
fidence bounds. A more qualitative approach of how to deal with low de-
fault portfolios is also discussed in BBA et al. (2004).

Focusing more on the issue of how to estimate PDs (or in general mi-
gration probabilities), Lando/Skodeberg (2002) and Jafry/Schuermann
(2004) compare confidence intervals derived from the cohort against the
duration method. While the cohort method counts the number of migra-
tions at the end of the observation period (usually one year), the duration
method uses continuously observed rating actions and thus also takes
into account if a firm that was initially in rating category i was tempora-
rily in category j before ending up in category k at the end of the year.
With the duration method, Lando/Skodeberg (2002) show that one ob-
tains non-zero migration probabilities for cases where actually no such
migration has been observed in the data sample. This is reasonable, since
only because the default of a high-rated company has not been observed
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6 See e.g. Casella/Berger (2002), p. 437.
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does not mean that it has probability zero that this event can occur.7

More importantly, Lando/Skodeberg (2002) and Jafry/Schuermann (2004)
show that confidence intervals for duration estimates are usually tighter
than those for the cohort estimate, since the former contain more infor-
mation. However for the duration estimate, no analytical confidence in-
tervals are known and can only be obtained via bootstrapping methods.
Hanson/Schuermann (2006) provide a systematic comparison of confi-
dence intervals across different estimation methods and interval. Inter-
estingly, with a rather large sample, they show that interval lengths can
be substantial, making it impossible to distinguish statistically between
notch-level PDs in the investment grade categories. Similar results were
derived by Christensen et al. (2004) although their focus is on addressing
the issue of rating momentum, i. e. the observation that a recently down-
graded firm has a higher risk of being further downgraded than firms
being in the same rating category for a longer period of time.

Besides the financial application, the construction of appropriate con-
fidence intervals for a binomial proportion is the topic of recent research
in statistical science. Brown et al. (2001, 2002) or Agresti/Coull (1998)
have shown that the standard confidence interval based upon the asymp-
totic property of the binomial distribution performs poor not only for
small sample size.

The remainder of the article is organized as follows: Section II dis-
cusses the theoretical foundations of confidence intervals. Section III
applies four alternative intervals to exemplary representative credit port-
folios, and section IV concludes.

II. Theoretical Underpinnings of Confidence Intervals

The industry standard for the estimation of the PD is the cohort
method. As mentioned in the previous section, the cohort method consists
of counting the number of firms that were in rating category i at the be-
ginning of the year and ended up in default (or any non-default category)
at the end of the year relative to the total number of firms initially in
category i. Denoting in the following the PD of a firm in rating category i

220 Jochen Lawrenz

7 Actually, this is easily seen by multiplying a one-year migration matrix with
itself, giving the two-year matrix. If the one-year matrix contains a zero PD for
the highest grade, but a non-zero probability of migrating into a lower category
which itself has a positive PD, then the two-year matrix will show up a non-zero
PD for the highest grade also.

Kredit und Kapital 2/2008

OPEN ACCESS | Licensed under CC BY 4.0 | https://creativecommons.org/about/cclicenses/
DOI https://doi.org/10.3790/kuk.41.2.217 | Generated on 2025-10-30 15:46:04



by pi, and the default frequency calculated from a sample size of n by
f i

n ,8 then according to the cohort method, we have

f i
n ã

ni;def

ni
;È1ê

where ni;def is the number of firms migrating from i to default, and ni is
the total number of firms initially in category i.

Usually, the default frequency f is taken to be the PD estimate, i. e.:

p̂pi ã f i:

This is also consistent with the requirements in BCBS (2006): “PD esti-
mates must be a long-run average of one-year default rates for borrowers
in the grade [. . .]”.9 One may come up with different methods to provide
PD estimates such as the duration method previously mentioned, but
since our aim is to provide an assessment of the PD estimate uncertainty
in the context of standard methods used in practice and for typical port-
folio structure and size, we focus on the cohort method.

Once the PD estimate in terms of the default frequency is given, we
can ask how good this estimate is given the data underlying the estima-
tion, i. e. we can ask for the “likely range of errors” for this estimate in
terms of calculating a confidence interval. In general, the construction of
a confidence interval consists of finding lower and upper bounds L and
U, such that the probability that the interval ÈL;Uê covers the unknown
true parameter, i. e. L < p < U, or p 2 ÈL;Uê equals some predefined con-
fidence level. Denoting the confidence level by a, we seek to determine U
and L, such that:

ProbfL < p < Ug ã 1� a;È2ê

where a is frequently taken to be 5%. It is important to note that in this
formulation the random quantity is the interval and not the parameter.10

Obviously, L and U will depend on the estimate p̂p, the sample size n, the
confidence level a and distributional assumptions.
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8 If reference to the rating category or sample size is not necessary, we simply
drop the sub- and superscripts.

9 BCBS (2006), Sec. 447.
10 More formally, we can interpret the confidence interval as a set of parameter

values for which the hypothesis that it contains the true parameter cannot be re-
jected at a given confidence level.
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In the present case, since default either occurs or does not occur, we
know that the default frequency follows a binomial distribution with
some (unknown) parameter p. The first approach to come up with a con-
fidence interval, which is also the standard approach in most text-
books,11 is to make use of the fact that the binomial distribution can be
asymptotically approximated by the normal distribution. The Central-
Limit Theorem tells us, that as n!1:

fn � p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarÈ fnê
p ® NÈ0;1ê:È3ê

Therefore, as a corollary,12 we have:

lim
n!1

Prob

�

�z <
fn � p
sÈfnê

< z

™

ã
Z z

�z
fÈsêdsÈ4ê

ã FÈzê �FÈ�zê;È5ê

where fÈ�ê and FÈ�ê denote the density and distribution function of the
standard normal distribution respectively. Because of symmetry of the
normal distribution, we have FÈzê �FÈ�zê ã 2FÈzê � 1.

If we want the left hand side of (4) to be equal to 1� a as in (2), we
find z to be z ã F�1È1� a=2ê, i. e. the È1� a=2ê-quantile of the standard
normal distribution. Therefore, for the remainder we formally define:
za � F�1È1� a=2ê.

Plugging in za in (4) and rearranging terms gives

lim
n!1

Prob fn � zasÈ fnê < p < fn þ zasÈ fnê
� �

ã 1� a:

The estimated standard deviation (standard error) of the estimator fn is
easily found to be

ŝsÈ fnê ã

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fnÈ1� fnê
n

s

:

Considering that ŝsÈ fnê is a consistent estimator for the standard devia-

tion sÈ fnê ã
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pÈ1� pê
n

r

, we end up with the following interval, for which

we can be sure to cover the true parameter with an asymptotical confi-
dence level of 1� a:
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11 See e.g. Mood et al. (1974) or Davison (2003).
12 Known as the de Moivre-Laplace Theorem. See e.g. Capinski/Kopp (1999).
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fn � za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fnÈ1� fnê
n

s

:È6ê

This is called the Wald confidence interval. For further use, we abbre-
viate the lower and upper bound of the Wald interval as LW and UW .

It is important to note, that the above reasoning guarantees that the
Wald interval covers the true parameter with probability 1� a only
asymptotically, i. e. as n!1. The actual coverage probability, Cpr
ã Probfp 2 ÈLW ;UW êg, may deviate significantly from its nominal value if
n is small. This is why most textbooks give the recommendation to use
the Wald interval only if n p is larger than 5, or similar conditions. But in
fact, Brown et al. (2001, 2002) show that the actual coverage probability
of the standard Wald interval may not only be poor for small n, but can
still deviate substantially from its nominal value for large n and for p
near 0 and 1.

Figure 1 plots the value of the actual coverage probability Cpr. In the
left panel, Cpr is shown for increasing n and a fixed p ã 0:005. The right
panel holds fixed a constant n ã 100 and shows Cpr for p from 0 to 1.
The dashed line indicates the nominal confidence level, which is
a ã 0:05. It is easily recognized, that the actual coverage probability can
be quite significantly lower than its nominal value. In particular for
small n and p near 0, Cpr may be only around 75%. The behavior of the
coverage probability is quite erratic, and still for a sample as large as
n ã 1018, where the above-mentioned rule of thumb is satisfied, we can
calculate Cpr to be only 88.94%.

To overcome the poor performance of the Wald interval, in particular
for small sample size, several alternative formulations for confidence
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Figure 1: Coverage Probability Cpr of the Wald Interval
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intervals have been put forward. A natural alternative is to avoid using
the asymptotic property and construct a confidence interval from the fi-
nite sample binomial distribution. The idea is to find the endpoints of
the interval by the following reasoning. The upper limit U is the highest
value of p0 such that the probability of observing not more than ndef de-
faults is just a=2, i. e. it is the solution in p0 of the following equation:

X

ndef

x ã 0

n
x

� �

px
0 È1� p0ên � x ã a=2:È7ê

Correspondingly, the lower endpoint of the interval L is found as the
smallest solution in p0, such that the probability of observing more than
ndef is a=2:

X

n

x ã ndef

n
x

� �

px
0 È1� p0ên � x ã a=2:È8ê

The interval obtained in this way is known as the Clopper-Pearson “ex-
act” confidence interval, and we will denote its endpoints by LCP and
UCP.

Although the Clopper-Pearson interval is called “exact”, its coverage
probability is known to be too conservative. The construction of the in-
terval guarantees that the coverage probability is at least the nominal
value. However, for small n and p near 0 and 1 the actual Cpr is substan-
tially higher, approaching nearly 100%.13

Therefore, Agresti/Coull (1998) argue that “approximate is better than
‘exact’”, and propose a confidence interval that relies on the same form
as the standard Wald interval, i. e. based upon approximation, but uses a
different mid point of the interval. Recall, that the default frequency is

p̂p ã fn ã
ndef

n
. Now, define

~nndef ã ndef þ
z2

a

2
; ~nn ã nþ z2

a;
~ffn ã

~nndef

~nn
:

For the case that a ã 0:05, za ã 1:96 which is approximately 2. This
means, that we add 4 observations to our sample, out of which 2 are de-

224 Jochen Lawrenz

13 Brown et al. (2001) therefore call the Clopper-Peason interval “wastefully
conservative” (p. 113). However, it may serve as an alternative (conservative)
benchmark. See e.g. Christensen et al. (2004) and Hanson/Schuermann (2006). See
also Agresti/Coull (1998) or Davison (2003), p. 346.
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faults. Agresti/Coull (1998) summarize their suggestion in the succinct
statement: “Add two successes and two failures and then use the Wald
formula.”14

The Agresti-Coull interval is therefore found by

~ffn � za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~ffnÈ1� ~ffnê
~nn

s

;È9ê

and we abbreviate the lower and upper endpoints by LAC and UAC.

Note, that the midpoint of this interval is a weighted average of fn and
1=2, as can be seen by simple transformations

~ffn ã
ndef þ z2

a=2
nþ za

ã
ndef

nþ za
þ

z2
a=2

nþ za
ã

ndef

n
n

nþ za
þ

z2
a=2

nþ za

ã fn
n

nþ za

� �

þ
1
2

z2
a

nþ za

� �

:

This formulation can be justified by using standard errors of the null
hypothesis value instead of its maximum likelihood estimator.15

While the Agresti-Coull interval significantly improves the perfor-
mance of either the Wald and the Clopper-Pearson interval, it has still
deficiencies when n is small. Brown et al. (2001) therefore propose to use
Agresti-Coull only for n > 40, while they recommend the so called (equal-
tailed) Jeffreys interval for small n < 40.

Unlike the Wald and Agresti-Coull interval which use maximum likeli-
hood principles, the Jeffreys interval is obtained by applying inference
based on Bayes’ theorem. Bayesian inference requires to specify some
prior density for the random variable. In the case of a binomial propor-
tion, the standard (conjugate) prior16 is the Beta distribution. For a bino-
mial random variable Y that has a prior beta distribution with para-
meter a and b, BetaÈa; bê, the posterior distribution is BetaÈY þ a;
n� Y þ bê. In the present context, the (non-informative) prior distri-
bution is BetaÈ1=2; 1=2ê. The posterior distribution is accordingly
BetaÈndef þ 1=2; n� ndef þ 1=2ê.
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14 Agresti/Coull (1998), p. 122.
15 For more on this, see Agresti/Coull (1998), p. 120.
16 See Davison (2003) for the notion of “conjugate priors”.
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Thus, the endpoints of the (equal-tailed) Jeffreys interval are defined
as

LJ ã B Èa=2; ndef þ 1=2; n� ndef þ 1=2êÈ10ê

UJ ã B È1� a=2; ndef þ 1=2; n� ndef þ 1=2ê;È11ê

where B Èq; a; bê denotes the q-quantile of the Beta distribution with
parameter a and b.

Note, that the Bayesian approach underlying the Jeffreys interval pro-
vides a slightly different interpretation about the confidence interval.
While we took care to talk about the interval that covers the true un-
known parameter with some probability in the previous three cases, we
can say that p lies inside the interval with some probability in the (Baye-
sian) case of the Jeffreys interval. This is because p is not a parameter
but a random variable.17

Other intervals are available, but we will confine ourselves to the four
above-mentioned alternatives: (i) The standard Wald interval, which is
known to have a low coverage probability, (ii) the “exact” Clopper-Pear-
son interval, which is too conservative, (iii) the Agresti-Coull interval
which is recommended unless n < 40 and (iv) the Jeffreys interval, which
provides adequate results also for smaller n.

Figure 2 shows the four intervals at work.

The left panel shows the upper bounds for increasing sample size n for
an estimate of p̂p ã 0:001, i. e. 0,1% or 10 basispoints (bp) indicated as the
horizontal dashed line at the bottom. The confidence level is chosen as
95%, i. e. a ã 0:05. The solid line nearest to the estimate is the upper
limit of the Wald interval (UW ), the dashed line is the Jeffreys interval
(UJ), the dash-dotted line corresponds to the upper endpoint of the Clop-
per-Pearson interval (UCP), and finally the dotted line is the Agresti-
Coull upper limit (UAC). While the lower limits for the Clopper-Pearson
and the Jeffreys up to the sample size of 300 are defined to be 0, the
lower endpoints of the Wald and Agresti-Coull interval are negative. Ob-
viously, the PD cannot be negative, and the calculated negative values
are a consequence of the normal approximation to the binomial propor-
tion, which is especially inadequate in this case. Note, that the Clopper-
Pearson and the Agresti-Coull interval are farthest from the estimate,

226 Jochen Lawrenz

17 For more details, see Casella/Berger (2002), p. 435 f.
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which is consistent with the fact that their coverage probability tend to
be significantly higher than their nominal value.

The right panel shows the confidence intervals for an estimate of
p̂p ã 0:05, i. e. 5%, again for a ã 0:05. In this case, we see both, the upper
and lower limits. Interestingly, the upper endpoint of the Wald interval is
nearest to the estimate, while the lower endpoint is farthest. The Clop-
per-Pearson interval, due to the discreteness of the binomial distribution
displays jumps.

For both values of the estimate, however, the interval length can be
substantial and differences between the intervals matter especially for
small estimates. Table 1 reports numerical values for p̂p ã 10 bp and
p̂p ã 500 bp for a sample size of n ã 100 and n ã 300.18
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Figure 2: Comparison of the Four Confidence Intervals

Table 1

Upper and Lower Endpoints of the Confidence Intervals

(in bp) n LW UW LJ UJ LCP UCP LAC UAC

p̂p ã 10 100 0� 71.9 0 273 0 362 0� 465
(0.001%) 300 0� 45.7 0 107 0 122 0� 169

p̂p ã 500 100 72.8 927 193 1,061 164 1,128 177 1,155
(0.05%) 300 253 746 295 790 282 811 297 816

18 Figures indicated with a star are set to zero (although their computed value is
negative) since a binomial fraction cannot assume values smaller than zero.
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III. Confidence Intervals for Different Portfolios

The main focus of this article is to provide an assessment of the PD es-
timation uncertainty encountered in typical credit portfolios of different
size and structure. Therefore, we will apply the results of the previous
section to three different portfolios with three different sample sizes, cor-
responding to a small, medium and large portfolio.

For the first portfolio, we use the data reported in Hanson/Schuer-
mann (2006) on the rating history of Standard & Poor’s for U.S. obligers.
Their sample consists of 50.611 firm-years of data, mainly from large
corporations and extends over the period 1982 to 2002.

The second portfolio relies on data taken from the Austrian Central
Bank (Österreichische Nationalbank, OeNB).19 Although it is only a data
example for the validation of rating systems, we will label it the OeNB
portfolio.

The last portfolio pretends to represent a credit portfolio consisting of
small and medium-sized enterprises (SME). The corresponding data is
taken from Schwaiger (2002), who constructed a rating system of 12
classes based on 11,610 Austrian firms with a yearly turnover between
e 1 and 50 Million.20

The three portfolios vary in the number of rating classes (7 for S&P, 10
for OeNB and 12 for SME) as well as in the distribution of obligers
across rating categories. (See Table 2 and Figure 5 in the Appendix.)

We will consider the three portfolios in three different sizes. The small
portfolio is assumed to consist of n ã 3:000 firm-years of data, while the
medium and the large portfolio contain n ã 10:000 and n ã 25:000 firm
years respectively. If we presume that we have 3 years of rating history,
this corresponds roughly to 1.000, 3.300, 8.300 obligers in the corre-
sponding portfolios. By varying the portfolio size, we hold fixed the PDs
in each rating category, as well as the distribution of obligers across ca-
tegories, to reflect the different structure of the portfolios.

We apply the four confidence intervals introduced in the previous sec-
tion to the resulting 9 cases. Figure 3 reports the results. Note, that for
the best category in each portfolio there were no defaults and thus the
cohort estimate is 0, and we don’t calculate a confidence interval in this

228 Jochen Lawrenz

19 See OeNB (2004).
20 For more information on the SME portfolio, see Schwaiger (2002).
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case.21 Note, that the vertical axes in figure 3 are in log-scale. For each
rating category,22 the four different confidence intervals are plotted,
where the left solid bar is the Wald interval, the left dashed bar is the
Jeffreys interval, the right solid bar is the Clopper-Pearson interval, and
the right dashed bar is the Agresti-Coull interval.

The first observation from figure 3 is that the length of the confidence
interval for “real-world” credit portfolios can be substantial. For exam-
ple, considering the Jeffreys interval, the length for the A rating in the
small, medium and large S&P portfolio is 44.5 bp, 20.4 bp and 12.2 bp
respectively. This might sound innocent, but recall that the PD estimate
for A is itself 6.2 bp, so if we express the interval length in terms of the
PD estimate, we obtain 717%, 329% and 196%.

The same is true for class 5 of the OeNB portfolio, where the Jeffreys
interval has a length of 235.1 bp, 125.9 bp and 79.2 bp respectively,
which is significantly higher in absolute terms, but translates in smaller
relative length figures in terms of the PD estimate, which is 122.6 bp, of
191%, 102% and 64% respectively.

Comparing the four different confidence intervals with respect to their
lengths, we observe significant differences especially in the good rating
categories. In the extreme case of the small S&P portfolio, the interval
length for the AA category is 13.04 bp for the Wald interval, while it is
109.78 bp for the Agresti-Coull interval, which is more than eight times
as large. Even for the large S&P portfolio the Agresti-Coull interval is
still three times larger (5.49 bp versus 15.44 bp) than the Wald interval
for category AA.

The second pattern we observe is that the upper limit of the Wald in-
terval UW is always lower than the upper limits of the other intervals,
while the lower limit of the Wald interval LW is usually the lowest one.
This is most obviously observed in the small S&P and OeNB portfolios.
This refers to the fact, that length alone is not the only criteria to eva-
luate the performance of a confidence interval.

The poor coverage probability of the Wald interval mentioned above is
also partly due to the fact that it is “downward” biased. As we will argue
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21 For reasons of comparability, we do not report confidence intervals, although
it would be possible to calculate interval estimates, as Pluto/Tasche (2005) have
shown.

22 For the S&P portfolio, 2 corresponds to AA, 3 corresponds to A, . . . and 7 cor-
responds to CCC.
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in the next section, this bias has especially adverse implications in terms
of capital requirements.

The final remarkable observation we can draw from figure 3 refers to
the possibility of distinguishing between different rating categories. Con-
sider the small S&P portfolio in the upper left panel. The PD estimate
for category BBB is 35.7 bp. Except for the Wald interval, all upper lim-
its of the confidence intervals for category A and AA are higher than this
estimate. This means, the BBB category is not statistically significantly
different from the A and AA category in the small portfolio case. For the
medium and large portfolio, the BBB estimate no longer lies within the
interval of the A category, but we still cannot differentiate significantly
the AA category from the A category. This is in line with the results of
Hanson/Schuermann (2006) who also find that notch-level rating cate-
gories are statistically indistinguishable in the investment grade rat-
ings.23 The same observation is found in the OeNB and SME portfolio,
where in the small OeNB portfolio, we cannot distinguish category 4
from categories 2, 3 and 5, since the estimate lies within their confidence
intervals. For the small SME portfolio, f. ex. categories 9 through 12 are
indistinguishable from each other.

To provide an economic assessment of the uncertainty of the PD esti-
mation, we now demonstrate how the above derived confidence intervals
translate into risk-weights according to the Basel II IRB approach. This
means, we take the PD value at the upper and lower limits of the various
confidence intervals and calculate the corresponding risk-weight by ap-
plying the IRB risk-weight function as it is defined in BCBS (2006). In
this way, we obtain a quasi confidence interval for the capital require-
ment the bank must hold.24 As before, we apply this to nine representa-
tive portfolios. Figure 4 reports the results.

All nine panels show the deviation of the risk-weight at the upper and
lower limit from the risk-weight of the point estimate, i. e. the ordinate
shows the differences RWÈU:ê � RWÈ ^PDPDê and RWÈL:ê � RWÈ ^PDPDê, where
RWÈ�ê denotes the IRB risk-weight function.25 For better comparison, all

Assessing the Estimation Uncertainty of Default Probabilities 231

23 Hanson/Schuermann (2006) consider an even greater data sample, and con-
clude that “ratings are indistinguishable even with 22 years of data.” p. 16.

24 Note, that we call this a quasi confidence interval. This is meant to stress,
that in general it need not be true that for some function f : È0;1ê ! R, the interval
È fÈLê; fÈUêê covers fÈpê with the same probability as ÈL;Uê covers p. However, if f
is monotone, the two coincide. After all, the quasi confidence interval presented
here is mainly meant to provide an economic flavor for the estimation uncertainty.
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nine panels show deviations in the same range of �70 to þ80 risk-weight
(percentage) points.

The first observation, we can draw from figure 4 refers to the absolute
magnitude of the risk-weight confidence interval. Consider again, the sin-
gle A rating category of the S&P portfolio. Note, that this category has
the highest percentage share of all obligers. The point estimate is 6.2 bp,
which translates into a IRB risk-weight of 22.35%. The deviations in the
small portfolio are substantial. The risk-weights calculated at the upper
limit of the Clopper-Pearson and Agresti-Coull intervals are the highest,
being 79.2 and 78.6 respectively, which is a deviation of þ56.8 and þ56.2.
Thus, for an exposure of 1,000,000 of an A obligor, the risk-weighted asset
at the upper limit of the confidence interval is roughly 790,000 instead of
223,500, which translates into a capital requirement of 63,200 instead of
17,880. This is roughly 3.5 times more! Risk-weights at the upper limit of
the Jeffreys and Wald interval are lower, having a deviation of þ66.2 and
þ47.5, giving a capital requirement which is 295% and 212% higher than
that at the point estimate. For the negative deviations, there is a floor at –
8, since BCBS (2006) requires that for corporate exposures, risk-weights
can not be lower than 14.4, corresponding to a minimum PD of 3 bp. The
impact of the floor is also responsible that there is no negative deviation
for category AA, since the estimated PD of 1.49 bp is already below this
minimum. The estimation error thus only works in one direction and the
risk-weight confidence interval appears highly asymmetric for the high
investment grades. The asymmetry is reversed for the lowest category,
CCC. For this rating class, we only observe negative deviations. This
seems puzzling, especially if we go back to figure 3 where we do have a
symmetric confidence interval. The explanation is given in terms of the
shape (and a curiosity) of the IRB risk-weight function. In general, the
IRB risk-weight function is concave, thus deforming a symmetric PD in-
terval to an asymmetric risk-weight interval where we have larger nega-
tive than positive deviations. The curiosity is, that the IRB function starts
to decline for very high PD values,26 giving lower risk-weights at both
the lower and upper limit of the confidence interval.

232 Jochen Lawrenz

25 We use the foundation IRB-approach, which implies a given LGD ã 0:45
(BCBS (2006), Sec. 287.) and a maturity adjustment with an effective maturity of
2.5 years. (BCBS (2006), Sec. 318.)

Note, that in the case of the SME portfolio we use the SME adjustment of the
IRB function by assuming S ã 30, representing an average SME firm.

26 By analyzing the risk-weight function as it is defined in BCBS (2006), we
find a maximum for PD ã 0:2962.
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The second striking observation from figure 4 is the large difference
between the four intervals for many cases. Consider category AA in the
medium S&P portfolio, where we have 1,429 observations. The positive
deviation with the Wald interval is þ16.2, while the deviation according
to the Agresti-Coull interval is þ49.2 which is three times larger. The Jef-
freys and Clopper-Pearson upper limits lie in between, being 251% and
221% larger.

The Wald interval not only displays the lowest positive risk-weight de-
viations but also the highest negative deviations, as can be seen most ap-
parently in the small OeNB portfolio for rating categories 5 and 6. As
mentioned previously, the Wald interval is generally downward biased, in
the sense that the lower endpoint is lower than those of the other inter-
vals. This feature is further aggravated through the concavity of the risk-
weight function. Therefore, using the standard Wald interval in this con-
text seems especially inappropriate.

IV. Conclusion

When using estimated probabilities of default for any risk management
purposes and especially for the assessment of capital requirements, it is
important to have some measure of the reliability of this estimate. In
terms of BCBS (2006), a bank needs to evaluate the “likely range of er-
rors” involved in the estimation. This can be done by calculating confi-
dence intervals for the point estimate. A commonly used interval is the
standard Wald interval. However, as we have shown in the first section
of this article, there is an active theoretical debate in the statistics litera-
ture of how to appropriately construct a confidence interval for a bino-
mial proportion. Thereby, there seems to be agreement that the Wald in-
terval performs quite poorly, not only for small sample size. Alternative
intervals have been put forward, out of which we have discussed, the
“exact” Clopper-Pearson, the Agresti-Coull and the Jeffreys interval. De-
pending on the sample size, the upper and lower endpoints can be signif-
icantly different between these intervals.

To assess the economic significance of the estimation error, we have ap-
plied the four intervals to nine exemplary credit portfolios which differ
in their structure and size. Although we cannot claim that these are
“real-world” portfolios, we consider them as being representative and
able to reproduce “real-world” conditions. The impact of the estimation
error is shown as the confidence interval for the PD estimate on the one
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hand, and in order to give a better economic intuition in terms of a quasi
confidence interval for the risk-weights according to the Basel II IRB ap-
proach on the other hand.

Two main conclusions emerge from the analysis: (i) The absolute mag-
nitude of the estimation error in terms of the length of the confidence in-
terval can be large. (ii) Which interval is used matters and can make a
significant difference.

The first point is mainly driven by the number of observations avail-
able for the portfolio, but due to the distribution of obligers across rating
categories it is still relevant for high rating classes for rather large port-
folios. This is reflected in the result, that to some extent one cannot sta-
tistically distinguish investment grade rating classes. The amount of esti-
mation uncertainty we found in our analysis adds to the impression that
the Basel II IRB approach insinuates an accuracy that is not justified,
and adds to the finding of Bank/Lawrenz (2003), who have argued that
there is model-inherent uncertainty in the IRB approach, which makes
results doubtful. It has to be stressed at this point, that our results may
even be regarded as a lower bound on the uncertainty, in that they rely
on the independence assumption of obligers. For correlated default
behavior, confidence intervals are even larger.27

While the first point seems to have found repercussion in literature
and in practice, the second point is rarely addressed. As our results de-
monstrate, the widely used standard Wald interval is the worst choice
especially for small portfolios and for good rating classes. The Clopper-
Pearson interval, which is presented as exact alternative, has also draw-
backs. Based on our analysis, we would recommend to use the Jeffreys
interval.

To conclude, our results demonstrate that the estimation uncertainty is
of a significant magnitude and should be addressed more carefully.
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27 See Höse/Huschens (2003) on this.

Kredit und Kapital 2/2008

OPEN ACCESS | Licensed under CC BY 4.0 | https://creativecommons.org/about/cclicenses/
DOI https://doi.org/10.3790/kuk.41.2.217 | Generated on 2025-10-30 15:46:04



Appendix: Characteristics of the Rating Systems

Table 2

Portfolio Characteristics (f in bp)

S&P portfolio

i AAA (1) AA (2) A (3) BBB (4) BB (5) B (6) CCC (7)

ni 2417 6690 12907 9794 6681 7533 792

ni;def 0 1 8 35 94 491 226

f i
n 0 1.5 6.2 35.7 141 652 2854

OeNB portfolio

i 1 2 3 4 5 6 7 8 9 10

ni 50 1788 1876 3345 1223 856 342 214 265 257

ni;def 0 3 6 15 15 17 12 9 22 33

f i
n 0 17 32 45 123 199 351 421 830 1284

SME portfolio

i 1 2 3 4 5 6 7 8 9 10 11 12

ni 5 1181 2745 2755 1681 1130 563 623 290 100 161 376

ni;def 0 1 8 12 20 22 20 23 27 10 18 53

f i
n 0 5 30 44 121 198 362 376 947 1020 1132 1409

236 Jochen Lawrenz

0.0001 0.001 0.01 0.1

0.05

0.1

0.15

0.2

0.25

0.3

PD

% S&P vs. OeNB

0.0001 0.001 0.01 0.1

0.05

0.1

0.15

0.2

0.25

0.3

PD

% S&P vs. SME

Solid black bars represent the S&P portfolio. Open bars in the left panel represent the OeNB portfolio.
Open bars in the right panel represent the SME portfolio.

The abscissa is in log-scale and represents PD values, the ordinate represents the percentage share of all
obligers in the different rating categories.

Figure 5: Portfolio Structure
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Summary

Assessing the Estimation Uncertainty
of Default Probabilities

The probability of default (PD) is one of the key variables in credit risk manage-
ment. By using PD estimates as input to pricing and capital requirement calcula-
tions, one should be concerned of how good these estimates are. Confidence inter-
vals are thereby a convenient way to assess the range that covers the true, but un-
known parameter with a certain confidence probability. In this paper, we discuss
the issues occurring in the construction of confidence intervals for a binomial pro-
portion, and assess the magnitude of estimation uncertainty for exemplary but re-
presentative credit portfolios. To give an economic meaning to the range of errors,
we translate the PD confidence interval into a risk-weight confidence interval by
applying the Basel II IRB approach.

The two main conclusions are: (i) The magnitude of estimation uncertainty can
be substantial and is economically relevant. (ii) The choice of confidence interval
matters and differences between intervals can be large. (JEL G21, C80)

Zusammenfassung

Eine Schätzung der Schätzungenauigkeit
von Ausfallwahrscheinlichkeiten

Die Ausfallwahrscheinlichkeit (Probability of Default, PD) ist eine der zentralen
Variablen im Kreditrisikomanagement. Um PD-Schätzungen als Einflussgrößen
für Preisbildung und die Berechnung von Eigenmittelhinterlegung heranzuziehen,
sollte man die Frage nach der Güte dieser Schätzungen stellen. Konfidenzinter-
valle sind dabei eine geeignete Möglichkeit, jenen Bereich zu bestimmen, der den
tatsächlichen aber unbekannten Wert des Parameters mit einer bestimmten Wahr-
scheinlichkeit überdeckt. In diesem Artikel besprechen wir Aspekte, die bei der
Bildung von Konfidenzintervallen für binomial verteilte Größen zu beachten sind,
und geben eine Einschätzung der Schätzungenauigkeit für exemplarische, reprä-
sentative Kreditportfolios. Um den Schätzfehlern eine ökonomische Bedeutung zu
verleihen, übersetzen wir die Resultate der Konfidenzintervalle in Risikogewichte,
indem wir den IRB-Ansatz der Neuen Basler Eigenkapitalvereinbarung anwenden.

Die zwei zentralen Resultate sind: (i) Das Ausmaß der Schätzungenauigkeit ist
substanziell und ökonomisch relevant. (ii) Die Wahl des Konfidenzintervalls ist
von Bedeutung, da Unterschiede zwischen verschiedenen Alternativen bedeutend
sind.

238 Jochen Lawrenz

Kredit und Kapital 2/2008

OPEN ACCESS | Licensed under CC BY 4.0 | https://creativecommons.org/about/cclicenses/
DOI https://doi.org/10.3790/kuk.41.2.217 | Generated on 2025-10-30 15:46:04



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides true
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


