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Alternative Model Specifications for Implied Volatility 
Measured by the German VDAX 

By Niklas Wagner, Dresden/Berkeley, and Alexander Szimayer, Bonn* 

I. Introduction 

Variance - or equivalently volatility defined as the positive square root 
of variance - is an important input to option pricing. The classical 
Black/Scholes/Merton-assumption of stock prices modeled by a geo-
metric Brownian motion with a constant variance is a simplification 
which has been modified by introducing stochastic return variance. 
Models of stochastic variance are assumed in the option pricing models 
by Hull and White (1987), Wiggins (1987) and Heston (1993), among 
others. Common characteristics in variance behavior which have been 
observed empirically refer to mean reversion and conditional heteroske-
dasticity. Since it captures these characteristics and because of its analy-
tical tractability, the mean reverting square root process is a commonly 
used model of stochastic volatility. In the finance literature, the process 
was first proposed by Cox, Ingersoll, and Ross (1985b) for describing the 
dynamic behavior of interest rates. 

Apart from option pricing under stochastic variance, models of the 
variance or volatility dynamics are important for their own sake as well. 
Modeling and estimating volatility is central in many financial applica-
tions. Therefore, it is not surprising that first steps have been taken in 
the development of a market for volatility (Deutsche Börse AG (1997)). A 
sound economic reason for trading implied volatility is that it provides a 
way for market participants to hedge against changes in its level (see e.g. 
Locarek-Junge and Roth (1998)). As implied volatility is the key input to 
option prices, the possibility to trade volatility would reduce option 
portfolio risk which arises from the fact that future implied market vola-
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Alternative Model Specifications for Implied Volatility 591 

tility can only be estimated with error. Moreover, trading implied vola-
tility would allow for hedging changes in volatility when replicating op-
tions by a position in the underlying and cash. Consequently, preference-
free option pricing under stochastic volatility becomes possible (see also 
Hull and White (1987)). As volatility itself is not an asset providing a 
payoff stream, contingent claims such as futures and options create 
useful tradable volatility securities. 

Options on volatility have been discussed in Brenner and Galai (1989), 
Whaley (1993), and Grunbichler and Longstaff (1996) and Brenner, Ou, 
and Zhang (2000). When theory aims to explain the valuation of contin-
gent claims on volatility, a particular model is needed, representing the 
underlying volatility process. Whereas Brenner and Galai model volati-
lity conditional on the stock price process focusing on the negative corre-
lation between prices and volatility, Whaley and Grunbichler and Long-
staff consider volatility as a single univariate state variable. Whaley's 
approach relies on geometric Brownian motion as a model of volatility. 
Grunbichler and Longstaff assume the Cox/Ingersoll/Ross mean revert-
ing square root process. The recent approach by Brenner, Ou, and Zhang 
prices straddle options where volatility is assumed to follow a mean 
reverting process. 

Mean reversion in volatility is well-documented in the empirical litera-
ture. Although various models of stochastic volatility have been pro-
posed, the possibility of discontinuous sample paths has been mostly neg-
lected.1 In this paper it is argued that, jump diffusion processes which 
have been proposed and empirically investigated as a description of the 
dynamic behavior of stock prices, are at least as much appropriate for 
modeling return volatility. In particular, discontinuities in the volatility 
series are obviously related to large absolute returns. The investigations 
by French, Schwert, and Stambaugh (1987) and Schwert (1989), for ex-
ample, illustrate the possibility of jumps in stock market volatility. This 
characteristic is also observable for the VIX volatility index as noted by 
Fleming, Ostdiek, and Whaley (1995).2 Beinert and Trautmann (1991) 

1 An exceptional example is the work by Bookstaber and Pomerantz (1989) 
which proposes a model where volatility is given as a sum of random jumps. Here 
we choose a model approach closer related to the mean reverting diffusion model 
which is the standard volatility model in the literature. 

2 The authors report that there are several "spikes" in their VIX time series. 
Note that the VIX and the VDAX are weighted indices of implied at the money 
stock index option volatility. The underlying stock indices are the S&P100 and the 
DAX, respectively. For a description of the VDAX construction see Redelberger 
(1994). Although the construction of the VDAX is very similar to the one of the 
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592 Niklas Wagner and Alexander Szimayer 

and Trautmann and Beinert (1995) provide evidence of a jump compo-
nent in German stock and stock index returns. Their empirical results 
can be interpreted as implicit evidence for a jump component in German 
stock market volatility. Hence, a jump diffusion framework may provide 
a more realistic model for a series of implied volatility. The model for the 
VDAX which is presented in the next section builds upon a proposal by 
Szimayer and Wagner (1998). 

The rest of this paper is organized as follows. In Section II., the volatil-
ity models are presented. The extended model specification is character-
ized by a mean reverting jump diffusion, whereas the alternative specifi-
cation represents a reduction of the former to the well-know mean re-
verting diffusion. Section III. outlines the estimation methodology. 
Section IV. is concerned with an empirical investigation of the German 
VDAX volatility index based on several alternative model specifications. 
The question is, whether the more complicated jump model gives a better 
description of the observed VDAX series. An option pricing application 
of the model is presented in Section V. The paper ends with a brief con-
clusion in Section VI. 

II. Alternative Volatility Model Specifications 

The dynamic behavior of implied volatility is commonly modeled in a 
stochastic framework. It is assumed that within a frictionless capital 
market stock market volatility V as a state variable evolves continuously 
in time. In this section we compare three different models and give a 
short survey of previous empirical findings. 

1. Mean Reverting Jump Diffusion 

In the general jump diffusion specification assume that the dynamics 
of Vt are determined by a stochastic differential equation of the form 

(1) dVt = a(L - Vt_)dt + aVt-dBt + KVt_dNt. 

This equation defines a mean reverting Poisson jump diffusion process 
(MRJD). The parameters a, L, a and k are assumed to be given constants. 
The function r(Vt) = a(L — Vt) describes a mean reverting volatility com-

VIX, both indices differ with respect to the number of index options used in the 
calculation, their time to maturity and the underlying weighting scheme (see also 
Whaley (1993)). 
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ponent with a mean level of L and an instantaneous adjustment rate a. 
Standard Brownian motion is denoted Bt. The possibility of discontinu-
ous jumps is incorporated via a Poisson process: The stochastic differen-
tial dNt refers to a homogenous Poisson process Nt with intensity A > 0 
per unit time. Accordingly, Vt_ denotes the state of Vt in advance of a 
possible Poisson jump event. The processes Bt and Nt in equation (1) are 
assumed to be stochastically independent. The instantaneous variance of 
the process-conditional on no Poisson jump event occurring-is denoted 
by a2 > 0. The parameter k represents the relative jump height, given a 
Poisson event occurs.3 

2. Mean Reverting Diffusion 

Setting the intensity A equal to zero in equation (1) yields a model spe-
cification where the dynamics of Vt are determined by a stochastic dif-
ferential equation of the form 

(2) dVt = a{L - Vt)dt + aVtdBt. 

This equation defines a mean reverting diffusion process (MRD) with 
the parameters and the process Bt as given above. The process defining 
equation (2) itself is a special case of 

(3) dVt = a(L - Vt)dt + aV?dBt. 

Equation (3) was proposed as a starting point for empirical investiga-
tions by Chan, Karolyi, Longstaff, and Sanders (1992), denoted CKLS in 
the following. 

3. A Comparison of the Model Specifications 

In order to model a volatility time series which is reasonable from an 
economic standpoint, the parameters a, L and a are assumed to be posi-
tive in all model specifications. Furthermore, the variance of changes in 
volatility increases with the level of volatility. Under models (1), (2) or 

3 Of course, it would also be possible to assume a stochastic jump height and 
hence introduce an additional dispersion parameter. The parameter K would then 
be the expected jump height (see Merton (1976)). Here, the reason for assuming a 
constant jump height is that in model estimation, using a simpler model is appro-
priate. Poisson distributed jumps are infrequent events by definition. When esti-
mating not only the average jump height but also its variance, achieving reason-
able standard errors for the latter requires large sample sizes. 
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(3) with 7 > 0 volatility is assumed to be conditionally heteroskedastic. 
In (3), the degree of heteroskedasticity can be varied by the choice of the 
parameter 7. 

The most relevant difference in the model specifications is the jump 
component. Taking the expectation of dVt in the MRJD model (1) we have 

(4) E{dVt) = a[L - E(Vt)]dt + K,\E{Vt)dt, 

as E(dBt) = 0 and E(dNt) = Xdt. Assuming that the volatility series Vt de-
fined by (1) is stationary and setting the local expected change in Vt 

equal to zero, equation (4) gives the following solution for the uncondi-
tional volatility expectation:4 

For the MRJD model specification, the unconditional expectation (5) 
exceeds the mean reversion level. For the MRD model specification 
(tt = A = 0 , 0 < a < l ) , the unconditional expectation equals the mean re-
version level. 

Previous empirical studies of implied stock index volatility by Biihler 
and Griinbichler (1996), Deutsche Borse AG (1997) and Nagel and Scho-
bel (1999) are all based on the CKLS-methodology. Biihler and Griin-
bichler (1996) calculate estimates for the unrestricted model (3) and the 
square root specification with 7 = V2 in (3). The Deutsche Borse AG 
(1997) uses model (3) for their empirical investigation. Nagel and 
Schobel (1999) choose the square root specification as a model of stock 
market variance. 

The overall findings indicate significant parameter estimates including 
the mean reversion parameter. However, evidence for the square root 
model is not clear cut. The results of Biihler and Griinbichler (1996) lead 
to a rejection of the model for the VIX in the period January 1988 to 
March 1993. Nagel and Schobel (1999) use the VDAX series in the years 

4 This equation is equivalent to the resulting expectation of a stationary AR(1)-
process with heteroskedastic noise term formulated as the discrete-time analogue 
of the continuous-time mean reverting process defined by (1). The stationarity 
condition for the specification is: |1 — a + KX\ < 1 (see e.g. Hamilton (1994, p. 53)). 
In particular, when assuming A - KX < 1 the condition A > KX follows from above. 
Hence, 0 < KX < a < 1 + KX is a sufficient stationarity condition. 

(5) 

4. Empirical Studies 
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1992 up to 1995, where the results indicate that the square root specifi-
cation cannot be rejected at the five percent significance level. A second 
main finding of the studies is conditional heteroskedasticity in the series 
which implies a nonzero parameter 7 in equation (3). Biihler and Griin-
bichler (1996) estimate a significant parameter 7 of about 1.5 for the 
VIX. According to the results of Deutsche Borse AG (1997), estimation 
for the VDAX series from September 1993 to September 1996 yields an 
estimate of the 7-parameter close to one.5 

In the remainder of this paper we concentrate on models (1) and (2) 
which provide nested candidates for the investigation of a jump compo-
nent in the VDAX series. For comparison purposes, we also provide em-
pirical findings based on the CKLS-methodology. 

III. Model Estimation 

In this section, we derive a methodology for the estimation of the 
MRJD model specification defined by equation (1). Using approximate 
discrete-time versions of the differential equations, the model para-
meters are estimated consistently with the method of moments approach. 
The generalized method of moments technique thereby allows to improve 
the asymptotic efficiency of the estimates and to introduce testable over-
identifying restrictions. The estimation methodology is described in 
detail for the MRJD model specification only, since the estimation proce-
dure for the MRD model specification follows as a simplification without 
jump component. 

1. Discretization of the Model 

Following the literature on asset price process estimation (see e.g. 
Marsh and Rosenfeld (1983) and CKLS (1992)), one may estimate the 
parameters of the continuous-time model (1) by using a discrete-time ap-
proximate specification. We get the following formulation 

(6) AVt = Vt- Vf_! = a{L - Vf_i)Ai+ ay/At et + Vt.lKqt, 

where et ~ N(0,1) and qt ~ Poi(XAt) are independent discrete random 
variables. By a simple transformation we define the relative change in 
implied volatility as: 

5 Note that the question of whether 7 equals a certain nonzero value is of sec-
ondary interest. 
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(7) Yt = —± = (aLV;_\ - a + /cA) At + <ry/Kt et + n{qt - A At). 
"t-1 

The estimation methodology is now based on the generalized method of 
moments (GMM) approach. References are Hansen (1982) and Newey and 
West (1987b), among others. Textbook treatments are found in Greene 
(1997) and Hamilton (1994). 

2. On the Choice of the Moment Restrictions 

Naturally, with method of moments estimation, the question arises 
which moments to choose. In general, we may decide on imposing ortho-
gonality conditions based on the assumption of the uncorrelatedness of 
certain variables or implement higher order moment restrictions. Apart 
from that, it still remains a matter of judgement what particular set of 
conditions is chosen. 

With respect to the type of moment conditions, the literature generally 
suggests to prefer orthogonality conditions and to avoid higher order mo-
ments with possibly instable sample properties. Note however, that the 
GMM approach downweights moment restrictions with higher sample 
variance. Furthermore, the paper by CKLS is an example for estimating 
interest rate processes by an overrestricted GMM system with orthogon-
ality conditions. When estimating a volatility process, there is reason to 
believe that the real world time series dependence structure is more com-
plicated than the one assumed by the linear AR(l)-approximation in 
equation (6). Empirical results by Franks and Schwartz (1991), for exam-
ple, have shown that an AR(1) process is a useful but not fully satisfying 
description of the mean reverting behavior of implied market volatility 
(see also Bühler and Grünbichler (1996) and Wagner and Szimayer (2001) 
with results for VIX and VDAX). Hence, it is not surprising that the 
VDAX estimation results by Nagel and Schóbel (1999) show dependence 
on the number of sample autocovariances used in the GMM estimation 
algorithm. This effect should not be present under the true CLKS-model, 
what is confirmed by the authors in a simulation experiment. Further-
more, note that the CLKS-methodology is by construction not capable of 
describing the higher order moment behavior which is predicted by 
model (1). For these reasons, we apply higher order moments in the esti-
mation of our model parameters and test the entire set of moment condi-
tions.6 
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3. Specification of the Moment Restrictions 

As the volatility processes defined by the differential equations (1) and 
(2) are characterized by the Markov property,7 expectations of AV* and 
Yt taken conditional on the complete history of the process up to t - 1 
are equal to the expectations taken conditional on the immediate past 
given by Vt_i. From equation (6) it follows for the conditional expected 
change in volatility 

(8.1) E(YT Vt_i| V t_i) = (AL+(*A-A)Vt_i)AT. 

We now derive the conditional uncentered moments of the relative 
change in volatility given by equation (7). Defining the function 

/ ( V t - O s s o L V ^ - a 

it follows (see e.g. Johnson and Kotz (1969) and Johnson, Kotz, and Ba-
lakrishnan (1994)): 

E(YT\VT-I) = («A+/(Vt_i))At 
E(Y2 |Vt_i) = (K2\ + o*)At + (k2X2 + 2/(Vt_i)«A + /(V t_i)2) Ai2, 

(8.2-6) E(Yt3|Vt_i) = /c3AAi+ (3/c3A2 + 3 ^ +3/(Vt_i)(/iA + i72))Ai2 + 0(At3), 
E(Y*1 Vt_i) = «4AAt + (7/c4A2 + 6K2 Xo2 + 3 a4 + 4/(Vt_1)/c3A)Ai2 + 0(Ai3), 
E(Yt5|yt_!) = K,5XAt + (15k5A2 + 10 K3 XA2 + 5/(Vi_i)«4A)Ai2 + 0(Ai3). 

The conditional theoretical moments (8.1-6) are given as functions of 
the parameter vector 6 = (a, L, a2, A, k). Parameter estimation by the 
method of moments uses the property that the sample moments converge 
in probability to functions of the model parameters. By virtue of the 
Slutsky-Theorem, solving for the model parameters yields a consistent 
estimator of the parameters (see e.g. Greene (1997)). For given empirical 

6 Referring to the issue of choosing a particular set of moment conditions, it can 
be advantageous to conduct a simulation study in order to assess the performance 
of a certain estimator under a given moment specification. However, since the 
overall size of our data set is quite large as compared to those of other studies, we 
rely on the general asymptotic results for our estimators. The interested reader 
may refer to Nagel and Schobel (1999) who perform a detailed Monte Carlo study 
focusing on the small sample properties of the GMM-estimators resulting from the 
CLKS-methodology. 

7 This follows since the volatility driving processes BT and NT are both Levy pro-
cesses (see Protter (1995), p. 238). 
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observations yt and vt, t = 1 , . . . , T, and choosing the time interval to be 
one trading day, At = 1, we can set up the following vector of moment 
conditions: 

ytvt-1 - [aL + («A - a)vt-i] 
yt - [«A+/(vt_i)] 

y2 _ [k2A + ^ + k2X2 + 2f(vt-i)K\ + /(«*_i)2 

(9) ht(6,yt) = y] - [k?\ + 3/c3A2 + ZkXo2 + 3/(t?t_i)(/cA + a2)} 
y\ - [/c4A + 7/c4A2 + 6k2Ao2 + 3a4 + 4/(ut_!)/c3A] 

j/f - [«5A + 15k5A2 + 10K3Xo2 + 5/(ut_i)«4A] 

1 T X , . . . , J. . 

Under model (6), ignoring terms of higher order in the theoretical 
moment equations (8.4-6), the expectation of ht(0,yt) is equal to zero. 
This implies that the vector 

(10) 
1 T 

converges to zero in probability if the empirical observations confirm the 
set of moment conditions. 

4. Estimation, Asymptotics, and Test Procedures 

The generalized method of moment estimator of the parameter vector 6 
is given as the minimizer of a quadratic form 

(11) 0 = arg min gT (0, y)'W gT (6, y). 

Consistency of the estimator is given for an arbitrary positive definite 
weighting matrix W. Note that the classical method of moment estimator 
(MM) follows as a special case of (11) where the number of moment re-
strictions in gT(0, y) is equal to the number of parameters in 9. In the 
just-identified case, the estimator is defined by gT(^MM,y)=:0 and the 
minimum in (11) exactly equals zero irrespective of the choice of the po-
sitive definite weighting matrix W. In analogy to the MM-case, it follows 
for the generalized overidentified case that the asymptotic distribution 
of the parameter estimate is normal 

(12) y/T{e-d)-^N(0; VT), 

where the estimate of the covariance matrix is: 
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dgrffly) a-iggr(fl.y) ' 
-1 

90 9=9 T 

Here, S T denotes an estimator of the asymptotic covariance matrix of 
the vector of moment conditions times y/T which is given by 

An autocorrelation and heteroskedasticity consistent estimate of S 
which is positive semidefinite by construction is derived in Newey and 
West (1987a). An optimal selection criterion for the time series lag I used 
in the estimation of the matrix is e.g. discussed in Newey and West 
(1994). 

It can be shown that the weighting matrix W in (11) that yields an 
asymptotically optimal, i.e. smallest, covariance matrix VT in (12) is 
given by S _ 1 (Hansen (1982), Newey and West (1987b)). When minimizing 
the quadratic form given by (11), after e.g. starting with the identity 
matrix, W = I, the weighting matrix is therefore set W = ST . Commonly, 
the estimation algorithm continues with iteratively updating the weight-
ing matrix for each new estimate of the parameter vector. 

A testable implication of the model specification based on the fit of the 
overidentified system is (Hansen (1982)) 

with q equal to the number of overidentifying restrictions. Testing the 
asymptotic significance of single model parameters follows from the 
asymptotic normality result in (12). Due to the latter, tests of functional 
forms including subsets of parameters can be performed by the Wald sta-
tistic. Under the null hypothesis f(0) - q = 0 it follows (see e. g. Greene 
(1997)) 

where w is equal to the number of restrictions given by the vector valued 
function f(0). 
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IV. Empirical Results 

The subject of investigation in the empirical part of this paper is im-
plied stock market volatility measured by the German VDAX. The 
VDAX is an index measuring volatility implied in call and put option 
prices where the German stock market index DAX serves as the under-
lying. The index calculations are based on the assumption that the 
Black/Scholes option pricing formula is a suitable model for the forma-
tion of option prices. Implied volatility is estimated from a subset of 
liquid at the money options. The contribution of each implied volatility 
estimate is not subject to an explicit weighting scheme. Instead, weights 
are determined implicitly by an ordinary least squares regression yield-
ing an aggregate estimate of implied volatility. The index is finally calcu-
lated as a time-weighted average of two aggregate implied volatility esti-
mates belonging to two different maturities. This ensures a constant 45 
days average time to maturity of the options used in the index calcula-
tion (see Redelberger (1994)). 

1. The Data Sample 

The VDAX sample covers six years of daily data. It includes 1504 ob-
servations for the index in the time period beginning on January, 2, 1992 
and ending on December, 30, 1997. The empirical frequency distribution 
of the VDAX series vu t = 0, 1 , . . . , T, is plotted in Figure la). Descriptive 
statistics indicate that the distribution with a sample mean of 16.68 and 
a standard deviation of 4.89 is skewed to the right (sample skewness = 
1.39) and shows excess kurtosis (sample kurtosis - 3 = 2.59). As can be 
seen from the histogram, the most frequent class of VDAX observations 
is approximately centered somewhat below 15, which gives some indica-
tion of the reversion level. Figure lb) plots the empirical distribution of 
the T = 1503 relative VDAX changes yu t = 1 , . . . , T. It is skewed to the 
right (sample skewness = 1,51) and exhibits large excess kurtosis (sample 
kurtosis - 3 = 9.80). The standard deviation of daily relative VDAX-
changes equals 0.0437. 

Skewness and positive excess kurtosis in Figure lb) provide evidence 
for a highly non-normal distribution of the relative VDAX-changes. The 
hypothesis of normally distributed relative changes can be tested by tra-
ditional statistical approaches yielding a rejection of the normality-hy-
pothesis at all conventional confidence levels. 
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VDAX relative changes 

Figure 1: a) Empirical daily VDAX-distribution in the sample period 
January, 2, 1992 to December; 30, 1997; b) Empirical distribution of the 

daily relative VDAX-changes (T = 1503) 

2. Calculation of the Estimates 

Following the methodology of Section III., parameter estimation is per-
formed for both, the MRJD and the nested MRD model specification. The 
minimization problem (11) is solved numerically by application of the 
Marquardt-algorithm. The estimate of the weighting matrix is updated 
with each new estimate of the parameter vector. As convergence for the 
MRJD specification is dependent on the given start solution, MM-esti-
mates based on system (8.1-5) are calculated before continuing with 
GMM. 

Note that the advantage of consistent estimation by the method of mo-
ments is that its asymptotic properties hold irrespective of possible het-
eroskedasticity or autocorrelation in the data. As outlined in Section III., 
heteroskedasticity and autocorrelation consistent estimation of the cov-
ariance matrix preserves optimality of the GMM-estimator. It is therefore 
a means of robustifying the properties of the GMM-estimator under pos-
sible violations of the model assumptions. In the present application, all 
of the discrete-time model specifications imply that the time series prop-
erties of the volatility series are captured by an AR(l)-process (see equa-
tion (6)). A possible violation of this assumption does not harm the 
asymptotic properties of the GMM-estimator (as long as we do not expli-
citly impose AR(l)-type orthogonality conditions). Hence, when calculat-
ing the parameter estimates, the time series lag I for the estimation of 
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the covariance matrix is chosen according to the Newey and West (1994) 
variable lag selection criterion. 

As outlined in Section III., the GMM estimation methodology allows 
for testing whether the observed data confirm the overall set of moment 
conditions imposed by the model. A critical test of the overall model re-
strictions based on Hansen's QT statistic (13) has to account for the 
whole set of testable model restrictions. In the present application, apart 
from the moment restrictions, an additional restriction is given by the 
time series assumption of an AR(l)-process. Thus, if the models were cor-
rect, a fixed lag of I = 1 would be appropriate in order to estimate the 
true covariance matrix S. Hence, we always choose a fixed lag of one 
when estimating Hansen's statistic and denote it by QT\I=I- The set of 
moment conditions (9) provides one overidentifying restriction. There-
fore, the QT\I=I-statistic is used for a test of the null hypothesis "q < 1" 
under the asymptotic x2U) distribution. 

3. Estimation Results 

The parameter estimation results for the MRJD and the MRD model 
specification are summarized in Table 1, where the standard deviation of 
the Brownian noise component is consistently estimated by a = y/d̂ . 

Before turning to an interpretation of the results, note that all para-
meter estimates are significant at least at the 95 % confidence level. Par-

Table 1 
GMM parameter estimates (T = 1503, system (8.1-6) for the MRJD specification, 
system (8.1-4) for the MRD specification). Asymptotic ¿-values based on Newey/ 
West estimates of the standard errors are given in brackets: ** and *** denote 
significance at the 95 % and 99 % confidence level for a single-sided i-test, respec-
tively. f t denotes significance at the 99% confidence level for a single-sided test 

under the asymptotic /2(1)-distribution 

Parameter a L a a2 K A QT\1=1 

MRJD 

Estimate (¿=13): 
t-value: 

0.0125*** 
(2.58) 

14.21*** 
(11.36) 

0.0356 0.00127*** 
(11.61) 

0.245*** 
(7.04) 

0.00931*** 
(2.64) 

1.22 

MRD 

Estimate (1=13): 
t-value: 

0.0106** 
(2.11) 

15.53*** 
(13.10) 

0.0381 0.00138*** 
(10.39) 

- - 7.66n 
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Alternative Model Specifications for Implied Volatility 603 

ticularly, the basic model restriction a2 > 0 cannot be rejected at the 99 % 
level. The sufficient stationarity condition 0 < / i A < a < l + /cA holds for 
the point estimates of the parameters. In Table 2, Wald test statistics for 
the null hypothesis of equality of each pair of parameters are given. The 
realizations for the MRJD and the MRD model specification both lead to 
a rejection of the equality hypotheses at the 95% confidence level. 
Hence, the assumption of a stationary V D A X series is supported by the 
estimation results. Particularly, the hypothesis "a = can be rejected 
for the MRJD model at the 95% confidence level. As shown in Section 
II., equation (5), the implication of the hypothesis would be that the long 
run unconditional expected volatility is infinite, which seems economic-
ally implausible. 

Now turn to the results of Table 1 in more detail. Time-series lags of 
I = 13 are chosen for the estimation of the asymptotic covariance ma-
trices. A residual analysis shows that the V D A X time series dependen-
cies are not fully captured by the model. The MRJD as well as the MRD 
residuals reveal a significant negative first order sample autocorrelation 
and partial autocorrelation coefficient. 

For the MRJD model specification, mean reverting behavior in the 
VDAX series yields an estimated value of 0.0125 for the a-coefficient. 
This corresponds to a half-life of 55 trading days.8 The point estimate of 
the mean reversion level is 14.21. Hence, any absolute deviation from the 

Table 2 

Wald test statistics for the GMM parameter estimates. Asymptotic p-values for the 
null hypotheses in brackets. ** and *** denote significance at the 95% and 99% 

confidence level, respectively 

Ho K = X = 0 = 0 a = K X a = 1 + KX 

MRJD 

WT: 1.59 102*** 11.2*** 4.29** 4.00 104*** 
p-value: (0.000) (0.000) (0.0384) (0.000) 

MRD a = 0 a = 1 

WT: - - 4.47** 3.92 104*** 
p-value: (0.0345) (0.000) 

8 Half-life in trading days is computed via the solution to the deterministic dif-
ferential equation given by the first term in equation (1). This results in a half-life 
of: a~Hn2. 
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604 Niklas Wagner and Alexander Szimayer 

reversion level will decrease to half of its initial value in about two and 
a half months of time, neglecting possible intermediate stochastic disturb-
ances. 

The economic prediction for K in the MRJD specification is that the 
relative jump height should be nonnegative as volatility is a measure de-
rived from squared return deviations. Indeed, the hypothesis "K = 0" can 
be rejected at high confidence levels (see Table 1). The estimated Poisson 
intensity is highly significant with a value of 0.00931 (asymptotic i-value 
= 2.64). Hence, in the MRJD model, a shock to implied volatility occurs 
every 107 trading days on average, then causing an expected relative vol-
atility increase of 24.5%. Both estimates, intensity and jump height are 
highly significant providing strong evidence for a jump component in the 
VDAX sample. The Wald test statistic (14) allows a rejection of the hy-
pothesis "The nested MRD model is adequate, K and A are equal to zero" 
at any commonly used confidence level (Table 2, first column). The same 
holds for the more general hypothesis: "The nested MRD model is ade-
quate, either n or A or both are equal to zero" (see Table 2, second 
column). 

The estimate of the mean reversion coefficient in the MRD model spec-
ification equals 0.0106 which implies that absolute deviations from the 
level of 15.53 vanish by half their size within 65 trading days on average. 
A comparison of the estimation results of the MRJD and the MRD model 
specification in Table 1 shows that the scale parameter estimate is highly 
significant in both cases. Obviously, Brownian noise is the dominating 
part in driving implied volatility. The mean reversion coefficient estimate 
implies an approximately identical half-life for both model specifica-
tions. As shown in Section II., a stationary MRJD volatility time series 
has an unconditional expectation which is larger than the mean rever-
sion level. Using point estimates in equation (5), the unconditional ex-
pectation for the MRJD model is equal to 1.22 times the estimated mean 
reversion level of 14.21. This yields a value of 17.38. On the other hand, 
expected volatility in the MRD model specification is known to be equal 
to the mean reversion level which is 15.53. Recall that the VDAX sample 
average is 16.68, which corresponds to the expectation of a Brownian 
noise model without mean reversion and jumps. Obviously, deriving a 
long run volatility expectation highly depends on the underlying model 
assumptions. 

The overall fit of the MRJD and the MRD model specification shows 
strikingly different results. While the Q-statistic is not significantly dif-
ferent from zero under the MRJD specification, the MRD specification 
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Alternative Model Specifications for Implied Volatility 605 

has to be rejected at the 99% confidence level. We conclude that the 
moment conditions of the mean reverting diffusion model are not sup-
ported by the empirical VDAX observations.9 For the given sample, the 
extended model provides an alternative which cannot be rejected at com-
monly used significance levels. 

4. Results for Alternative Estimation Approaches 

In this section we first investigate the sensitivity of our estimation re-
sults with respect to the overidentifying restriction. In order to provide a 
basis for comparisons, we additionally estimate the MRD model specifi-
cation based on the CKLS-methodology and test its moment restrictions 
for the given VDAX sample. 

Table 3 shows the estimation results based on a reduced system of 
moment restrictions. The reduction is achieved by dropping the highest 
order moment, yielding a just-identified non-linear system that puts 
equal weight on all moment conditions. The resulting MM-estimator has 
lower efficiency than the GMM-estimator. Nevertheless, the estimation 
results in Table 3 show that all parameter estimates stay significant at 
the 95% confidence level. The MM-estimates of the reversion rate are 
nearly unchanged while the estimates of the level and the standard de-
viation provide higher values than in the GMM case. The estimate of the 
Poisson intensity is lower and the estimate of the relative jump height is 
larger when compared to the GMM results. 

The CKLS-methodology derives moment restrictions for the expecta-
tion and the variance of discrete changes in volatility. Additionally, it 
imposes two orthogonality conditions. The resulting estimates for the 
VDAX sample are given in Table 4. Apart from the MRD model specifi-
cation according to equation (2), estimation results are given for the 
square root specification with 7 =V2 in model (3). In both cases, all esti-
mates are highly significant. Nevertheless, the Q-statistic leads to a re-
jection of both model specifications for the given sample (95 % and 99 % 
confidence level.). As found in previous empirical studies, the square 
root specification shows an inferior fit when compared to model specifi-
cation (2). 

9 This main result persists when the moment conditions (8.1-3, 8.5) instead of 
(8.1-4) are chosen for estimating the parameters of the MRD model specification. 
Calculating QT\I=I leads to a rejection of the model at the 97.5% confidence level 
in this case while the parameter estimates show lower t-statistics. 
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606 Niklas Wagner and Alexander Szimayer 

Table 3 
MM parameter estimates (T = 1503, system (8.1-5) for the MRJD model specifica-
tion, system (8.1-3) for the MRD model specification). Asymptotic ¿-values based 
on Newey/West estimates of the standard errors are given in brackets. ** and *** 
denote significance at the 95% and 99% confidence level for a single-sided t-test, 

respectively 

Parameter a L <7 o2 K A QT\1=1 

MRJD 

Estimate (I = 13): 
t-value: 

0.0123*** 
(2.49) 

15.32*** 
(11.89) 

0.0381 0.00146*** 
(8.21) 

0.284*** 
(6.81) 

0.00554** 
(1.84) 

-

MRD 

Estimate (I = 13): 
t-value: 

0.0107** 
(2.15) 

17.56*** 
(9.49) 

0.0436 0.00190*** 
(8.49) 

- - -

Table 4 
GMM parameter estimates for the MRD model (3) with constant y parameter un-
der the CKLS moment restrictions (T = 1503). Asymptotic ¿-values based on 
Newey/West estimates of the standard errors are given in brackets. *** denotes 
significance at the 99% confidence level for a single-sided ¿-test, t and f t denote 
significance at the 95% and 99% confidence level for a single-sided test under the 

asymptotic /2(l)-distribution, respectively 

Parameter Q L a a2 QT|I=1 

MRD 

Estimate (I = 24): 
i-value: 

0.0167*** 
(3.79) 

16.59*** 
(16.64) 

0.0430 0.00185*** 
(8.01) 

4.59* 

MRD with 7 = 7 2 

Estimate (I = 25): 
t-value: 

0.0176*** 
(3.98) 

16.35*** 
(17.61) 

0.171 0.0291*** 
(7.33) 

8.51" 

V. Option Pricing Under Risk Neutrality 

As pointed out in the introduction, a market for volatility may serve 
the needs of market participants to hedge against changes in the level of 
implied market volatility. This can be achieved by the introduction of 
volatility derivatives such as futures and options. The aim of a theoreti-
cal framework will be to explain the prices of the derivative securities 
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Alternative Model Specifications for Implied Volatility 607 

assuming a model which captures the dynamics of the underlying. In this 
section we present an option pricing application based on the models 
discussed above. For an overview on option pricing and model estima-
tion also refer to Campbell, Lo, and MacKinlay (1997). 

1. Preliminaries 

Unfortunately, pricing options on an implied volatility series has sev-
eral features that do not allow straightforward application of standard 
option pricing techniques. The standard theory of option pricing is based 
on arbitrage arguments and hence critically relies on the assumption of 
an underlying asset which can be traded in a frictionless market. How-
ever, the VDAX is not tradable.10 Even if it was, the empirical results 
presented above demonstrate that the assumption of frictionless trading 
in the underlying will be violated due to discontinuities. Furthermore, 
the convenient assumption that jump risk is unsystematic and hence un-
priced in a CAPM-world (see Merton (1976)) is not appropriate in the 
given context. Plenty of evidence in the finance literature shows that 
stock market volatility is negatively correlated with the level of market 
prices (so called "leverage-effect"). Consequently we cannot assume that 
jumps in VDAX volatility are unsystematic. 

While payoff replication breaks down, it is still possible to price the 
volatility contingent claim based on its payoff distribution. A risk neu-
tral pricing framework with a non-tradable underlying is therefore most 
appropriate to make inferences about VDAX option values (see also the 
approach of Giinbichler and Longstaff (1996)). In a risk-neutral valua-
tion framework, the following standard pricing formulas for European 
calls and puts can be applied: 

(15) Ct = ¿?(exp(-r(T - i))FT|$t), FT = max{VT-X; 0}, 

(16) Pt = E(exp(-r(T - f))FT|*t), FT = max{X - VT; 0}. 

In the above formulas, a flat term structure is assumed where the con-
stant discount rate under continuous compounding is given by r. The 

The VOLAX as a future on the VDAX was an attempt to provide a tradable 
instrument (see Deutsche Borse AG (1997)). In principal, the Cox/Ingersoll/Ross 
(1985a) concept of risk neutral valuation with a non-tradable underlying makes 
the introduction of a risk premium necessary and hence does not allow prefer-
ence-free pricing. 
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608 Niklas Wagner and Alexander Szimayer 

symbol represents available pricing information at time t including 
the initial state of the underlying given by Vt. X is the exercise price of 
the option. VT denotes the terminal value of the underlying11 and the 
time to maturity is given by (T - t). 

With our parameter estimates of Section IV., it is possible to simulate 
European VDAX call option prices as defined by equation (15).12 Avail-
able pricing information is given by the assumed parameterization of 
the VDAX process and the start value Vt. Performing m independent 
Monte Carlo runs it follows from (15) 

The standard errors of the above simulated option price depends on 
the precision of the parameter estimates and the number of simulation 
runs. Ignoring estimation risk for the model parameters, for large ra, the 
Central Limit Theorem implies: 

Hence, the standard error of the simulated option price (17) can be es-
timated by: 

As a result of Section IV., we point out that the assumption of a MRJD 
versus a MRD model specification is relevant not only because of the 
possibility of jumps in the underlying series, but also because it has an 
essential effect on the estimation results. Price simulations are possible 

11 More precisely, it denotes the terminal value of the underlying under risk-
neutrality. However, when the underlying variable is not a traded asset which is 
held for investment purposes, this distinction does not apply (see also Hull (1997), 
Chapter 13). 

12 For the sake of brevity, put option prices are not dealt with explicitly, they 
follow analogously from equation (16). Note however that since the estimated 
jump component with positive sign corresponds to an asymmetry in the VDAX-
distribution, the pricing implications under a jump model will be different for put 
options. 

2. Simulated Call Option Prices 

(17) 
I m 

Ct = exp(-r(r - t)) • — E VtÂ). 

Vm{C-C)-^N(0yF). 
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Alternative Model Specifications for Implied Volatility 609 

under many different scenarios and model assumptions. Based on our 
empirical findings, we choose the GMM-estimates from Table 1 for the 
MRJD model specification. In order to compare the results with a stand-
ard method of inference, we choose the CKLS-estimates for simulating 
European call prices under the MRD model specification (Table 4, 7 = 1). 
The sample standard deviation of relative VDAX changes yt is used in 
order to calculate hypothetical option prices under the Black/Scholes 
model. The continuously compounded annual rate in all models is 
r = 0.03. 

The pricing results for five different strikes and three maturities are 
summarized in Tables 5 and 6. As an initial VDAX-quotation Vt = 14 is 
chosen in Table 5, Vt = 20 is chosen in Table 6. A graphical overview 
showing the corresponding Black/Scholes-, MRD- and MRJD-prices is 
given in Figure 2. 

The results indicate that call option prices under the three model as-
sumptions deviate for all but very short maturities. Under a mean revert-
ing process, call option prices generally show significant deviations from 
Black/Scholes-prices. Call options with longer maturities have higher 
prices assuming a geometric Brownian motion. Under an initial VDAX 
which is lower than the estimated mean reversion level, Black/Scholes 
results in lower prices for in-the-money calls with short to mid maturi-
ties. Under an initial VDAX which is above the estimated mean rever-
sion level, Table 6 and Figure 2 show that the Black/Scholes model 
yields relatively high option prices for all assumed strikes and maturi-
ties. 

When characterizing differences between MRD and MRJD prices, 
Table 5 and 6 show that the MRJD model specification generally yields 
higher option prices. The MRD model specification especially yields 
lower prices for out-of-the-money options and options with long maturi-
ties. Under an initial VDAX of 14, Figure 2 illustrates that MRJD prices 
are characterized by a surface which mostly lies in-between Black/ 
Scholes and MRD prices. 

A comparison of the left and the right column in Figure 2 shows that 
under mean reversion, option prices for longer maturities are much less 
dependent on the initial VDAX-quotation than those calculated for 
shorter maturities. A comparison of the prices for options maturing in 
240 trading days given in Table 5 and 6 indicates that under the MRJD 
specification the price differences depending on an assumed initial 
Vt = 14 versus Vt = 20 are larger then under the MRD specification. In-
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610 Niklas Wagner and Alexander Szimayer 

Figure 2: From top to bottom: a) Black/Scholes, b) MRD and c) MRJD call option 
prices. Left hand side: Vt = 14. Right hand side: Vt = 20. (Black/Scholes: 
<7 = 0.0437, MRD and MRJD simulated with 100.000 runs and parameters from 
Table 1 and 4; strikes e {10, 10.25, . . . , 18.75}, maturities e {8, 16, . . . , 280 [trading 

days}}) 
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Alternative Model Specifications for Implied Volatility 613 

tuition suggests that this is due to the fact that under the MRJD model, 
the magnitude of a possible jump depends on the most recent level of the 
VDAX. 

3. Pricing Implications of the Jump Component 

In order to make inferences about the effects of the jump component in 
pricing options, we perform the price simulations based on a set of para-
meters which imply identical first and second moments of the simulated 
payoff distributions. Under this condition, it is possible to isolate the ef-
fects of different higher order moments of the MRJD versus MRD payoff 
distribution. 

More precisely, we require that the unconditional VDAX-expectation 
E(Vt) and the unconditional variance of the relative VDAX-changes Yt 

are identical under the MRD and MRJD estimates. This condition holds 
under MM-estimation.13 Equality of the unconditional expectation re-
quires with (5) that the equation 

( 1 8 ) LMM -MRD = ( ~ 7 T ) LMM-MRJD 
\ a — KA/ MM-MRJD 

holds. Additionally, the equation for the unconditional variance 

(I®) &MM-MRD = &MM-MRJD + MM-MRJD 

holds as well. Under MM-estimation, both model specifications yield 
estimates which imply identical estimates of the expectation and the 
standard deviation of the VDAX series. As a consequence, jump specific 
price differences can be examined in isolation. 

European call option prices are now simulated based on the MM-esti-
mates from Table 3. Table 7 shows MRJD and MRD prices with their 
estimated standard errors. The relative pricing error of the MRD versus 
the MRJD model specification, _ ¿ m m j ^ r j d ^ ^ m m ^ i r j d ? i s g i v e n 

in percentage terms. Table 7 reports results for the case Vt = 14 where 
in-the-money, at-the-money and out-of-the-money call prices can be ex-
amined. 

!3 A proof of this statement follows from solving the MM-estimation equations 
(8.1-3) with n = A = 0 for the MRD specification and solving equations (8.1-5) for 
the MRJD specification. 
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The simulation results show that the estimated standard errors are 
very close to each other as the variance of the payoff distribution is iden-
tical. The jump simulation has slightly higher standard errors. Relative 
to the MRJD specification, the MRD specification overprices in-the-
money call options and call options with long maturities. The MRJD 
specification yields higher prices for short maturity far out-of-the-money 
calls, although they are not (yet) significant for a strike of 20 and 80 
trading days maturity. MRJD and MRD prices differ insignificantly for 
far out-of the-money calls with a strike of 20 (see Table 7). 

VI. Conclusion 

Any volatility model represents a simplified framework which approx-
imates the time-varying behavior of real world market volatility. There is 
strong evidence in the literature that the dynamic behavior of implied 
stock index volatility deviates from a process of geometric Brownian 
motion. In order to obtain a realistic model of the VDAX-series, we show 
that both mean reversion and the possibility of jumps are important 
characteristics. Our model extends previously suggested volatility models 
by a homogeneous Poisson jump component. As demonstrated by the 
empirical investigation, the extended model provides highly significant 
evidence of a jump component. The empirical properties of changes in 
the VD AX-series are not adequately captured by the moment conditions 
derived from the standard mean reverting diffusion model. The more 
general model specification with jumps provides a superior empirical fit 
where the applied test statistic accounts for the increased number of 
parameters. Modeling a series of implied volatility such as the VDAX is 
important for risk management and option pricing applications. Focus-
ing on simulated European call option prices, we demonstrate that not 
only model selection but also the jump component itself has a significant 
pricing impact. 
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Summary 

Alternative Model Specifications for Implied Volatility 
Measured by the German VDAX 

In this paper, two nested model specifications for the stochastic behavior of the 
German stock market volatility index VDAX are compared based on a sample of 
index observations. Following the literature, the well-known mean reverting diffu-
sion model serves as the standard model specification. The second model specifica-
tion is an extension which allows for discontinuous changes in the series. The esti-
mation results for the VDAX indicate that the empirical observations do not con-
firm the moment restrictions given by the s tandard model. While, at the given 
confidence level, this yields to a rejection of the mean reverting diffusion model, 
the extended specification cannot be rejected providing significant evidence of a 
positive jump component. An application of the mean reverting jump diffusion 
model is given in a risk-neutral option pricing framework. Simulated option 
prices reveal economically and statistically significant price differences not only 
depending on the choice of the model specification but also due to the considera-
tion of the jump component itself. (JEL C13, C15, C22, G13) 

Zusammenfassung 

Zur Modellierung des VDAX-Volatilitätsindexes 

In dieser Arbeit werden zwei verwandte Ansätze zur Modellierung des VDAX-
Volatilitätsindexes anhand einer historischen Zeitreihe verglichen. Der Standard-
ansatz ist das weitverbreitete „Mean Reverting Diffusion "-Modell. Die Alternative 
besteht in einer Erweiterung, welche die Möglichkeit von Sprüngen in der Zeit-
reihe berücksichtigt. Die empirischen Ergebnisse zeigen, daß die Momentenre-
striktionen des Standardmodells abgelehnt werden müssen, während das erwei-
terte Modell bei gegebenem Konfidenzniveau nicht verworfen werden kann. Letz-
tere Modellspezifikation liefert den empirischen Beleg fü r eine statistisch 
signifikante, positive Sprungkomponente in der VDAX-Zeitreihe. Eine mögliche 
Anwendung des Diffusionsmodells mit Mean Reversion und Sprüngen wird an-
schließend im Bereich der risikoneutralen Optionsbewertung aufgezeigt. Die 
Simulation der Preise von europäischen Kaufoptionen belegt ökonomisch und 
statistisch signifikante Preisdifferenzen, die sowohl auf die Wahl der Modellspezi-
fikation als auch explizit auf die Berücksichtigung der Sprungkomponente zu-
rückzuführen sind. 
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Résumé 

Modèles alternatifs pour la volatilité mesurée par l'indice allemand VDAX 

Dans cet article, deux modèles apparentés de l'indice de volatilité sont compa-
rés. L'approche standard est celle du modèle de la diffusion «mean reverting». 
L'approche alternative est celle d'un élargissement du modèle qui considère la 
possibilité de discontinuité dans la série chronologique. Les résultats empiriques 
montrent que des restrictions momentanées du modèle standard doivent être reje-
tées alors que le modèle élargi ne peut pas être écarté pour un niveau de confiance 
donné. Cette spécification du modèle prouve l'existence d'un composant de discon-
tinuité statistiquement significatif dans la série chronologique VDAX. On montre 
ensuite l'utilisation possible du modèle de diffusion avec la «mean reversion» et 
les discontinuités lorsqu'on évalue des options neutres par rapport aux risques. La 
simulation des prix d'options d'achat européennes révèle des différences de prix 
statistiquement significatives qui s'expliquent par le choix de la spécification du 
modèle et par le composant explicite de discontinuité. 
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