Verteilungseigenschaften der Renditen von Kryptowährungen: Sind sie mit Aktien vergleichbar?
JOURNAL ARTICLE
Cite JOURNAL ARTICLE
Style
Format
Verteilungseigenschaften der Renditen von Kryptowährungen: Sind sie mit Aktien vergleichbar?
Vierteljahrshefte zur Wirtschaftsforschung, Vol. 87 (2018), Iss. 3 : pp. 83–105
1 Citations (CrossRef)
Additional Information
Article Details
Author Details
Armin Varmaz, Hochschule Bremen.
Stephan Abée, Hochschule Bremen.
Cited By
-
Kryptowährungen in der Asset-Allokation: Eine empirische Untersuchung auf Basis eines beispielhaften deutschen Multi-Asset-Portfolios
Glas, Tobias N.
Poddig, Thorsten
Vierteljahrshefte zur Wirtschaftsforschung, Vol. 87 (2018), Iss. 3 P.107
https://doi.org/10.3790/vjh.87.3.107 [Citations: 5]
References
-
Adhami, S., C. Giudici und S. Martinazzi (2017): Why Do Businesses Go Crypto? An Empirical Analysis of Initial Coin Offerings. SSRN Electronic Journal. doi:10.2139/ssrn.3046209.
Google Scholar -
Andersen, T. G. et al. (2001): The distribution of realized stock return volatility. Journal of Financial Economics. Elsevier, 61 (1), 43–76.
Google Scholar -
Aparicio, F. M. und J. Estrada (2001): Empirical distributions of stock returns: European securities markets, 1990–95. The European Journal of Finance. Taylor Francis, 7 (1), 1–21.
Google Scholar -
Asness, C. S., T. J. Moskowitz und L. H. Pedersen (2013): Value and momentum everywhere. The Journal of Finance. Wiley Online Library, 68 (3), 929–985.
Google Scholar -
Bollerslev, T. (1986): Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.
Google Scholar -
Campbell, J. Y. et al. (1997): The econometrics of financial markets. Princeton University press, Princeton, NJ.
Google Scholar -
Campbell, J. Y. et al. (2001): Have individual stocks become more volatile? An empirical exploration of idiosyncratic risk. The Journal of Finance, 56 (1), 1–43.
Google Scholar -
Campbell, J. Y. und J. H. Cochrane (2000): Explaining the poor performance of consumption-based asset pricing models, The Journal of Finance, 55 (6), 2863–2878.
Google Scholar -
Campbell, J. Y. und L. Hentschel (1992): No news is good news. Journal of Financial Economics, 31 (3), 281–318.
Google Scholar -
Cochrane, J. H. (2011): Presidential address: Discount rates. The Journal of Finance, 66 (4), 1047–1108.
Google Scholar -
Connor, G. (1984): A unified beta pricing theory. Journal of Economic Theory. Elsevier, 34 (1), 13–31.
Google Scholar -
Connor, G. und R. A. Korajczyk (1986): Performance measurement with the arbitrage pricing theory. A new framework for analysis. Journal of Financial Economics, 15 (3), 373–394.
Google Scholar -
Connor, G. und R. A. Korajczyk (1989): An intertemporal equilibrium beta pricing model. Review of Financial Studies, 2 (3), 373–392.
Google Scholar -
Cont, R. (2001): Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1 (2), 223–236.
Google Scholar -
Danielsson, J. und J. P. Zigrand (2006): On time-scaling of risk and the square-root-of-time rule. Journal of Banking and Finance, 30 (10), 2701–2713.
Google Scholar -
De Bondt, W. F. M. und R. H. Thaler (1984): Does the Stock Market Overreact? Journal of Finance, 40 (3), 793–805.
Google Scholar -
De Bondt, W. F. M. und R. H. Thaler (1987): Further evidence on investor overreaction and stock market seasonality. Journal of Finance, 42 (3), 557–581.
Google Scholar -
Deetz, M. et al. (2009): An evaluation of conditional multi-factor models in active asset allocation strategies: an empirical study for the German stock market. Financial Markets and Portfolio Management, 23 (3), 285–313.
Google Scholar -
Dzhabarov, C. und W. T. Ziemba (2010): Do seasonal anomalies still work? Journal of Portfolio Management, 36 (3), 93.
Google Scholar -
Engle, R. F. (1982): Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007.
Google Scholar -
Fama, E. F. (1963): Mandelbrot and the stable Paretian hypothesis. The Journal of Business, 36 (4), 420–429.
Google Scholar -
Fama, E. F. (1965): The Behavior of Stock-Market Prices. The Journal of Business, 38 (1), 34–105.
Google Scholar -
Fama, E. F. (1970): Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25, 383–417.
Google Scholar -
Fama, E. F. (1991): Efficient capital markets: II. The Journal of Finance, 46, 1575–1617.
Google Scholar -
Fama, E. F. und A. B. Laffer (1971): Information and capital markets. The Journal of Business, 289–298.
Google Scholar -
Fieberg, C., A. Varmaz und T. Poddig (2016): Covariances vs. characteristics: what does explain the cross section of the German stock market returns? Business Research, 9 (1), 27–50.
Google Scholar -
French, K. R. (1980): Stock returns and the weekend effect. Journal of Financial Economics, 8 (1), 55–69.
Google Scholar -
Glaser, M. und M. Weber (2003): Momentum and Turnover: Evidence from the German Stock Market. Schmalenbach Business Review, 55, 108–135.
Google Scholar -
Goyal, A. und P. Santa-Clara (2003): Idiosyncratic risk matters! The Journal of Finance, 58 (3), 975–1007.
Google Scholar -
Gray, J. B. und D. W. French (1990): Empirical comparisons of distributional models for stock index returns. Journal of Business Finance & Accounting, 17 (3), 451–459.
Google Scholar -
Hagerman, R. L. (1978): More evidence on the distribution of security returns. The Journal of Finance, 33 (4), 1213–1221.
Google Scholar -
Hirshleifer, J. (1971): The private and social value of information and the reward to inventive activity. The American Economic Review, 61 (4), 561–574.
Google Scholar -
Hirshleifer, J. und J. G. Riley (1979): The analytics of uncertainty and information-an expository survey. Journal of Economic Literature, 17 (4), 1375–1421.
Google Scholar -
Hubrich, S. (2017): Know when to hodl them, know when to fodl them: An Investigation of Factor Based Investing in the Cryptocurrency Space. SSRN Electronic Journal, 1–54. 10.13140/RG.2.2.35090.96969.
Google Scholar -
Ince, O. S. und R. B. Porter (2006): Individual equity return data from Thomson Datastream: Handle with care! Journal of Financial Research, 29 (4), 463–479.
Google Scholar -
Jacobs, H. (2015): What explains the dynamics of 100 anomalies?, Journal of Banking and Finance, 57, 65–85.
Google Scholar -
Jegadeesh, N. (1990): Evidence of predictable behavior of security returns. The Journal of Finance, 45 (3), 881–898.
Google Scholar -
Jegadeesh, N. und S. Titman (1993): Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of Finance, 48 (1), 65–91.
Google Scholar -
Keim, D. B. (1983): Size-Related Anomalies and Stock Return Seasonality: Further Empirical Evidence. Journal of Financial Economics, 12 (1), 13–32.
Google Scholar -
Lakonishok, J., A. Shleifer und R. W. Vishny (1994): Contrarian investment, extrapolation, and risk. The Journal of Finance, 49 (5), 1541–1578.
Google Scholar -
Lamoureux, C. G. und W. D. Lastrapes (1990): Heteroskedasticity in stock return data: volume versus GARCH effects. The Journal of Finance, 45 (1), 221–229.
Google Scholar -
Ludvigson, S. C. und S. Ng (2007): The empirical risk-return relation: A factor analysis approach. Journal of Financial Economics, 83 (1), 171–222.
Google Scholar -
Lux, T. und M. Marchesi (1999): Scaling and criticality in a stochastic multi-agent model of a financial market. Nature, 397 (6719), 498–500.
Google Scholar -
Mandelbrot, B. (1963): The variation of certain speculative prices. The Journal of Business, 36 (4), 394–419.
Google Scholar -
Mandelbrot, B. (1967): The variation of some other speculative prices. The Journal of Business, 40 (4), 393–413.
Google Scholar -
Mandelbrot, B. und H. M. Taylor (1967): On the distribution of stock price differences, Operations Research, 15 (6), 1057–1062.
Google Scholar -
Markowitz, H. (1952): Portfolio selection. Journal of Finance, 7 (1), 77–91.
Google Scholar -
McNeil, A. J. und R. Frey (2000): Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7 (3), 271–300.
Google Scholar -
Mittnik, S. und S. T. Rachev (1993): Modeling asset returns with alternative stable distributions. Econometric reviews, 12 (3), 261–330.
Google Scholar -
Officer, R. R. (1972): The distribution of stock returns. Journal of the American Statistical Association, 67 (340), 807–812.
Google Scholar -
Osterrieder, J. und J. Lorenz (2017): A statistical risk assessment of bitcoin and its extreme teil behavior. Annals of Financial Economics, 12 (01), 1750003.
Google Scholar -
Pagan, A. (1996): The econometrics of financial markets, Journal of Empirical Finance, 3 (1), 15–102.
Google Scholar -
Poddig, T. (1996): Analyse und Prognose von Finanzmärkten. Bad Soden, Uhlenbruch.
Google Scholar -
Rohrbach, J., S. Suremann und J. Osterrieder (2017): Momentum and Trend Following Trading Strategies for Currencies Revisited-Combining Academia and Industry. SSRN. doi:10.2139/ssrn.2949379.
Google Scholar -
Scherer, B. (2002): Portfolio resampling: Review and critique. Financial Analysts Journal, 58 part 6, 98–102.
Google Scholar -
Schiereck, D., W. De Bondt und M. Weber (1999): Contrarian and momentum strategies in Germany. Financial Analysts Journal, 55, 104–116.
Google Scholar -
Shannon, A. (1948): A Mathematical Theory of Communication. Urbana: University of Illinois Press.
Google Scholar -
Sidorovitch, I. (2010): Bewertungsmechanismen und der Stand der Integration auf dem europäischen Aktienmarkt. Berlin/Heidelberg, Pro Business.
Google Scholar -
Silvennoinen, A. und T. Teräsvirta (2009): Multivariate GARCH models. In: Handbook of financial time series. Springer, 201–229.
Google Scholar -
Tay, A. S. und K. F. Wallis (2000): Density forecasting: a survey. Journal of Forecasting, 19 (4), 235–254.
Google Scholar -
Wang, J. N., J. H. Yeh und N. Y. P. Cheng (2011): How accurate is the square-root-of-time rule in scaling tail risk: A global study. Journal of Banking and Finance, 35 (5), 1158–1169.
Google Scholar -
Deetz, M. et al. (2009): An evaluation of conditional multi-factor models in active asset allocation strategies: an empirical study for the German stock market. Financial Markets and Portfolio Management, 23 (3), 285–313.
Google Scholar -
Dzhabarov, C. und W. T. Ziemba (2010): Do seasonal anomalies still work? Journal of Portfolio Management, 36 (3), 93.
Google Scholar -
Engle, R. F. (1982): Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007.
Google Scholar -
Cont, R. (2001): Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1 (2), 223–236.
Google Scholar -
Hirshleifer, J. (1971): The private and social value of information and the reward to inventive activity. The American Economic Review, 61 (4), 561–574.
Google Scholar -
Hirshleifer, J. und J. G. Riley (1979): The analytics of uncertainty and information-an expository survey. Journal of Economic Literature, 17 (4), 1375–1421.
Google Scholar -
Hubrich, S. (2017): Know when to hodl them, know when to fodl them: An Investigation of Factor Based Investing in the Cryptocurrency Space. SSRN Electronic Journal, 1–54. 10.13140/RG.2.2.35090.96969.
Google Scholar -
Adhami, S., C. Giudici und S. Martinazzi (2017): Why Do Businesses Go Crypto? An Empirical Analysis of Initial Coin Offerings. SSRN Electronic Journal. doi:10.2139/ssrn.3046209.
Google Scholar -
Andersen, T. G. et al. (2001): The distribution of realized stock return volatility. Journal of Financial Economics. Elsevier, 61 (1), 43–76.
Google Scholar -
Aparicio, F. M. und J. Estrada (2001): Empirical distributions of stock returns: European securities markets, 1990–95. The European Journal of Finance. Taylor Francis, 7 (1), 1–21.
Google Scholar -
Asness, C. S., T. J. Moskowitz und L. H. Pedersen (2013): Value and momentum everywhere. The Journal of Finance. Wiley Online Library, 68 (3), 929–985.
Google Scholar -
Bollerslev, T. (1986): Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.
Google Scholar -
Lakonishok, J., A. Shleifer und R. W. Vishny (1994): Contrarian investment, extrapolation, and risk. The Journal of Finance, 49 (5), 1541–1578.
Google Scholar -
Lamoureux, C. G. und W. D. Lastrapes (1990): Heteroskedasticity in stock return data: volume versus GARCH effects. The Journal of Finance, 45 (1), 221–229.
Google Scholar -
Campbell, J. Y. et al. (1997): The econometrics of financial markets. Princeton University press, Princeton, NJ.
Google Scholar -
Keim, D. B. (1983): Size-Related Anomalies and Stock Return Seasonality: Further Empirical Evidence. Journal of Financial Economics, 12 (1), 13–32.
Google Scholar -
Jegadeesh, N. (1990): Evidence of predictable behavior of security returns. The Journal of Finance, 45 (3), 881–898.
Google Scholar -
Jacobs, H. (2015): What explains the dynamics of 100 anomalies?, Journal of Banking and Finance, 57, 65–85.
Google Scholar -
Ince, O. S. und R. B. Porter (2006): Individual equity return data from Thomson Datastream: Handle with care! Journal of Financial Research, 29 (4), 463–479.
Google Scholar -
Hagerman, R. L. (1978): More evidence on the distribution of security returns. The Journal of Finance, 33 (4), 1213–1221.
Google Scholar -
Glaser, M. und M. Weber (2003): Momentum and Turnover: Evidence from the German Stock Market. Schmalenbach Business Review, 55, 108–135.
Google Scholar -
French, K. R. (1980): Stock returns and the weekend effect. Journal of Financial Economics, 8 (1), 55–69.
Google Scholar -
Jegadeesh, N. und S. Titman (1993): Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of Finance, 48 (1), 65–91.
Google Scholar -
Ludvigson, S. C. und S. Ng (2007): The empirical risk-return relation: A factor analysis approach. Journal of Financial Economics, 83 (1), 171–222.
Google Scholar -
Lux, T. und M. Marchesi (1999): Scaling and criticality in a stochastic multi-agent model of a financial market. Nature, 397 (6719), 498–500.
Google Scholar -
Mandelbrot, B. (1963): The variation of certain speculative prices. The Journal of Business, 36 (4), 394–419.
Google Scholar -
Shannon, A. (1948): A Mathematical Theory of Communication. Urbana: University of Illinois Press.
Google Scholar -
Schiereck, D., W. De Bondt und M. Weber (1999): Contrarian and momentum strategies in Germany. Financial Analysts Journal, 55, 104–116.
Google Scholar -
Scherer, B. (2002): Portfolio resampling: Review and critique. Financial Analysts Journal, 58 part 6, 98–102.
Google Scholar -
Mandelbrot, B. (1967): The variation of some other speculative prices. The Journal of Business, 40 (4), 393–413.
Google Scholar -
De Bondt, W. F. M. und R. H. Thaler (1987): Further evidence on investor overreaction and stock market seasonality. Journal of Finance, 42 (3), 557–581.
Google Scholar -
De Bondt, W. F. M. und R. H. Thaler (1984): Does the Stock Market Overreact? Journal of Finance, 40 (3), 793–805.
Google Scholar -
Danielsson, J. und J. P. Zigrand (2006): On time-scaling of risk and the square-root-of-time rule. Journal of Banking and Finance, 30 (10), 2701–2713.
Google Scholar -
Fieberg, C., A. Varmaz und T. Poddig (2016): Covariances vs. characteristics: what does explain the cross section of the German stock market returns? Business Research, 9 (1), 27–50.
Google Scholar -
Fama, E. F. und A. B. Laffer (1971): Information and capital markets. The Journal of Business, 289–298.
Google Scholar -
Fama, E. F. (1991): Efficient capital markets: II. The Journal of Finance, 46, 1575–1617.
Google Scholar -
Fama, E. F. (1970): Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25, 383–417.
Google Scholar -
Fama, E. F. (1965): The Behavior of Stock-Market Prices. The Journal of Business, 38 (1), 34–105.
Google Scholar -
Fama, E. F. (1963): Mandelbrot and the stable Paretian hypothesis. The Journal of Business, 36 (4), 420–429.
Google Scholar -
Sidorovitch, I. (2010): Bewertungsmechanismen und der Stand der Integration auf dem europäischen Aktienmarkt. Berlin/Heidelberg, Pro Business.
Google Scholar -
Campbell, J. Y. et al. (2001): Have individual stocks become more volatile? An empirical exploration of idiosyncratic risk. The Journal of Finance, 56 (1), 1–43.
Google Scholar -
Campbell, J. Y. und J. H. Cochrane (2000): Explaining the poor performance of consumption-based asset pricing models, The Journal of Finance, 55 (6), 2863–2878.
Google Scholar -
Campbell, J. Y. und L. Hentschel (1992): No news is good news. Journal of Financial Economics, 31 (3), 281–318.
Google Scholar -
Cochrane, J. H. (2011): Presidential address: Discount rates. The Journal of Finance, 66 (4), 1047–1108.
Google Scholar -
Connor, G. (1984): A unified beta pricing theory. Journal of Economic Theory. Elsevier, 34 (1), 13–31.
Google Scholar -
Connor, G. und R. A. Korajczyk (1986): Performance measurement with the arbitrage pricing theory. A new framework for analysis. Journal of Financial Economics, 15 (3), 373–394.
Google Scholar -
Connor, G. und R. A. Korajczyk (1989): An intertemporal equilibrium beta pricing model. Review of Financial Studies, 2 (3), 373–392.
Google Scholar -
Rohrbach, J., S. Suremann und J. Osterrieder (2017): Momentum and Trend Following Trading Strategies for Currencies Revisited-Combining Academia and Industry. SSRN. doi:10.2139/ssrn.2949379.
Google Scholar -
Goyal, A. und P. Santa-Clara (2003): Idiosyncratic risk matters! The Journal of Finance, 58 (3), 975–1007.
Google Scholar -
Gray, J. B. und D. W. French (1990): Empirical comparisons of distributional models for stock index returns. Journal of Business Finance & Accounting, 17 (3), 451–459.
Google Scholar -
Silvennoinen, A. und T. Teräsvirta (2009): Multivariate GARCH models. In: Handbook of financial time series. Springer, 201–229.
Google Scholar -
Tay, A. S. und K. F. Wallis (2000): Density forecasting: a survey. Journal of Forecasting, 19 (4), 235–254.
Google Scholar -
Wang, J. N., J. H. Yeh und N. Y. P. Cheng (2011): How accurate is the square-root-of-time rule in scaling tail risk: A global study. Journal of Banking and Finance, 35 (5), 1158–1169.
Google Scholar -
Mandelbrot, B. und H. M. Taylor (1967): On the distribution of stock price differences, Operations Research, 15 (6), 1057–1062.
Google Scholar -
Markowitz, H. (1952): Portfolio selection. Journal of Finance, 7 (1), 77–91.
Google Scholar -
McNeil, A. J. und R. Frey (2000): Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7 (3), 271–300.
Google Scholar -
Mittnik, S. und S. T. Rachev (1993): Modeling asset returns with alternative stable distributions. Econometric reviews, 12 (3), 261–330.
Google Scholar -
Officer, R. R. (1972): The distribution of stock returns. Journal of the American Statistical Association, 67 (340), 807–812.
Google Scholar -
Osterrieder, J. und J. Lorenz (2017): A statistical risk assessment of bitcoin and its extreme teil behavior. Annals of Financial Economics, 12 (01), 1750003.
Google Scholar -
Pagan, A. (1996): The econometrics of financial markets, Journal of Empirical Finance, 3 (1), 15–102.
Google Scholar -
Poddig, T. (1996): Analyse und Prognose von Finanzmärkten. Bad Soden, Uhlenbruch.
Google Scholar -
Deetz, M. et al. (2009): An evaluation of conditional multi-factor models in active asset allocation strategies: an empirical study for the German stock market. Financial Markets and Portfolio Management, 23 (3), 285–313.
Google Scholar -
Dzhabarov, C. und W. T. Ziemba (2010): Do seasonal anomalies still work? Journal of Portfolio Management, 36 (3), 93.
Google Scholar -
Engle, R. F. (1982): Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007.
Google Scholar -
Cont, R. (2001): Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1 (2), 223–236.
Google Scholar -
Hirshleifer, J. (1971): The private and social value of information and the reward to inventive activity. The American Economic Review, 61 (4), 561–574.
Google Scholar -
Hirshleifer, J. und J. G. Riley (1979): The analytics of uncertainty and information-an expository survey. Journal of Economic Literature, 17 (4), 1375–1421.
Google Scholar -
Hubrich, S. (2017): Know when to hodl them, know when to fodl them: An Investigation of Factor Based Investing in the Cryptocurrency Space. SSRN Electronic Journal, 1–54. 10.13140/RG.2.2.35090.96969.
Google Scholar -
Adhami, S., C. Giudici und S. Martinazzi (2017): Why Do Businesses Go Crypto? An Empirical Analysis of Initial Coin Offerings. SSRN Electronic Journal. doi:10.2139/ssrn.3046209.
Google Scholar -
Andersen, T. G. et al. (2001): The distribution of realized stock return volatility. Journal of Financial Economics. Elsevier, 61 (1), 43–76.
Google Scholar -
Aparicio, F. M. und J. Estrada (2001): Empirical distributions of stock returns: European securities markets, 1990–95. The European Journal of Finance. Taylor Francis, 7 (1), 1–21.
Google Scholar -
Asness, C. S., T. J. Moskowitz und L. H. Pedersen (2013): Value and momentum everywhere. The Journal of Finance. Wiley Online Library, 68 (3), 929–985.
Google Scholar -
Bollerslev, T. (1986): Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.
Google Scholar -
Lakonishok, J., A. Shleifer und R. W. Vishny (1994): Contrarian investment, extrapolation, and risk. The Journal of Finance, 49 (5), 1541–1578.
Google Scholar -
Lamoureux, C. G. und W. D. Lastrapes (1990): Heteroskedasticity in stock return data: volume versus GARCH effects. The Journal of Finance, 45 (1), 221–229.
Google Scholar -
Campbell, J. Y. et al. (1997): The econometrics of financial markets. Princeton University press, Princeton, NJ.
Google Scholar -
Keim, D. B. (1983): Size-Related Anomalies and Stock Return Seasonality: Further Empirical Evidence. Journal of Financial Economics, 12 (1), 13–32.
Google Scholar -
Jegadeesh, N. (1990): Evidence of predictable behavior of security returns. The Journal of Finance, 45 (3), 881–898.
Google Scholar -
Jacobs, H. (2015): What explains the dynamics of 100 anomalies?, Journal of Banking and Finance, 57, 65–85.
Google Scholar -
Ince, O. S. und R. B. Porter (2006): Individual equity return data from Thomson Datastream: Handle with care! Journal of Financial Research, 29 (4), 463–479.
Google Scholar -
Hagerman, R. L. (1978): More evidence on the distribution of security returns. The Journal of Finance, 33 (4), 1213–1221.
Google Scholar -
Glaser, M. und M. Weber (2003): Momentum and Turnover: Evidence from the German Stock Market. Schmalenbach Business Review, 55, 108–135.
Google Scholar -
French, K. R. (1980): Stock returns and the weekend effect. Journal of Financial Economics, 8 (1), 55–69.
Google Scholar -
Jegadeesh, N. und S. Titman (1993): Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of Finance, 48 (1), 65–91.
Google Scholar -
Ludvigson, S. C. und S. Ng (2007): The empirical risk-return relation: A factor analysis approach. Journal of Financial Economics, 83 (1), 171–222.
Google Scholar -
Lux, T. und M. Marchesi (1999): Scaling and criticality in a stochastic multi-agent model of a financial market. Nature, 397 (6719), 498–500.
Google Scholar -
Mandelbrot, B. (1963): The variation of certain speculative prices. The Journal of Business, 36 (4), 394–419.
Google Scholar -
Shannon, A. (1948): A Mathematical Theory of Communication. Urbana: University of Illinois Press.
Google Scholar -
Schiereck, D., W. De Bondt und M. Weber (1999): Contrarian and momentum strategies in Germany. Financial Analysts Journal, 55, 104–116.
Google Scholar -
Scherer, B. (2002): Portfolio resampling: Review and critique. Financial Analysts Journal, 58 part 6, 98–102.
Google Scholar -
Mandelbrot, B. (1967): The variation of some other speculative prices. The Journal of Business, 40 (4), 393–413.
Google Scholar -
De Bondt, W. F. M. und R. H. Thaler (1987): Further evidence on investor overreaction and stock market seasonality. Journal of Finance, 42 (3), 557–581.
Google Scholar -
De Bondt, W. F. M. und R. H. Thaler (1984): Does the Stock Market Overreact? Journal of Finance, 40 (3), 793–805.
Google Scholar -
Danielsson, J. und J. P. Zigrand (2006): On time-scaling of risk and the square-root-of-time rule. Journal of Banking and Finance, 30 (10), 2701–2713.
Google Scholar -
Fieberg, C., A. Varmaz und T. Poddig (2016): Covariances vs. characteristics: what does explain the cross section of the German stock market returns? Business Research, 9 (1), 27–50.
Google Scholar -
Fama, E. F. und A. B. Laffer (1971): Information and capital markets. The Journal of Business, 289–298.
Google Scholar -
Fama, E. F. (1991): Efficient capital markets: II. The Journal of Finance, 46, 1575–1617.
Google Scholar -
Fama, E. F. (1970): Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25, 383–417.
Google Scholar -
Fama, E. F. (1965): The Behavior of Stock-Market Prices. The Journal of Business, 38 (1), 34–105.
Google Scholar -
Fama, E. F. (1963): Mandelbrot and the stable Paretian hypothesis. The Journal of Business, 36 (4), 420–429.
Google Scholar -
Sidorovitch, I. (2010): Bewertungsmechanismen und der Stand der Integration auf dem europäischen Aktienmarkt. Berlin/Heidelberg, Pro Business.
Google Scholar -
Campbell, J. Y. et al. (2001): Have individual stocks become more volatile? An empirical exploration of idiosyncratic risk. The Journal of Finance, 56 (1), 1–43.
Google Scholar -
Campbell, J. Y. und J. H. Cochrane (2000): Explaining the poor performance of consumption-based asset pricing models, The Journal of Finance, 55 (6), 2863–2878.
Google Scholar -
Campbell, J. Y. und L. Hentschel (1992): No news is good news. Journal of Financial Economics, 31 (3), 281–318.
Google Scholar -
Cochrane, J. H. (2011): Presidential address: Discount rates. The Journal of Finance, 66 (4), 1047–1108.
Google Scholar -
Connor, G. (1984): A unified beta pricing theory. Journal of Economic Theory. Elsevier, 34 (1), 13–31.
Google Scholar -
Connor, G. und R. A. Korajczyk (1986): Performance measurement with the arbitrage pricing theory. A new framework for analysis. Journal of Financial Economics, 15 (3), 373–394.
Google Scholar -
Connor, G. und R. A. Korajczyk (1989): An intertemporal equilibrium beta pricing model. Review of Financial Studies, 2 (3), 373–392.
Google Scholar -
Rohrbach, J., S. Suremann und J. Osterrieder (2017): Momentum and Trend Following Trading Strategies for Currencies Revisited-Combining Academia and Industry. SSRN. doi:10.2139/ssrn.2949379.
Google Scholar -
Goyal, A. und P. Santa-Clara (2003): Idiosyncratic risk matters! The Journal of Finance, 58 (3), 975–1007.
Google Scholar -
Gray, J. B. und D. W. French (1990): Empirical comparisons of distributional models for stock index returns. Journal of Business Finance & Accounting, 17 (3), 451–459.
Google Scholar -
Silvennoinen, A. und T. Teräsvirta (2009): Multivariate GARCH models. In: Handbook of financial time series. Springer, 201–229.
Google Scholar -
Tay, A. S. und K. F. Wallis (2000): Density forecasting: a survey. Journal of Forecasting, 19 (4), 235–254.
Google Scholar -
Wang, J. N., J. H. Yeh und N. Y. P. Cheng (2011): How accurate is the square-root-of-time rule in scaling tail risk: A global study. Journal of Banking and Finance, 35 (5), 1158–1169.
Google Scholar -
Mandelbrot, B. und H. M. Taylor (1967): On the distribution of stock price differences, Operations Research, 15 (6), 1057–1062.
Google Scholar -
Markowitz, H. (1952): Portfolio selection. Journal of Finance, 7 (1), 77–91.
Google Scholar -
McNeil, A. J. und R. Frey (2000): Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7 (3), 271–300.
Google Scholar -
Mittnik, S. und S. T. Rachev (1993): Modeling asset returns with alternative stable distributions. Econometric reviews, 12 (3), 261–330.
Google Scholar -
Officer, R. R. (1972): The distribution of stock returns. Journal of the American Statistical Association, 67 (340), 807–812.
Google Scholar -
Osterrieder, J. und J. Lorenz (2017): A statistical risk assessment of bitcoin and its extreme teil behavior. Annals of Financial Economics, 12 (01), 1750003.
Google Scholar -
Pagan, A. (1996): The econometrics of financial markets, Journal of Empirical Finance, 3 (1), 15–102.
Google Scholar -
Poddig, T. (1996): Analyse und Prognose von Finanzmärkten. Bad Soden, Uhlenbruch.
Google Scholar
Abstract
There are more than 1,500 other cryptocurrencies, which differ significantly from each other in terms of their usage or the underlying blockchain technology. Most of these cryptocurrencies can be traded on exchanges and can serve as investment instruments. In this paper, the empirical distribution properties of their returns for a very broad cross-section are examined and compared with those of stock returns. Returns on cryptocurrencies have several characteristics similar to equity returns: Returns are more likely observable around the averages; the autocorrelation of returns is very weak; the phenomenon of volatility clustering and the asymmetry of gains and losses do exist; the factor analysis of the returns reveals that one factor (the first principal component) explains about 60 percent of the common variation of returns; there is a weekday effect. However, there are some differences. For example, no heavy-tails can be identified and the momentum effect is only very weak. The results suggest that the stylezed facts of cryptocurrency returns are not very different from stock returns.