Chances and Challenges of Business Intelligence: Insights from the German Insurance Market
JOURNAL ARTICLE
Cite JOURNAL ARTICLE
Style
Format
Chances and Challenges of Business Intelligence: Insights from the German Insurance Market
Eden, Theresa | Werth, Oliver | Aschenbach, Claus Marcus | Breitner, Michael H.
Zeitschrift für die gesamte Versicherungswissenschaft, Vol. 112 (2023), Iss. 3 : pp. 237–259
Additional Information
Article Details
Author Details
Theresa Eden (korrespondierende Autorin), Gottfried Wilhelm Leibniz Universität Hannover, Institut für Versicherungsbetriebslehre, Otto-Brenner-Straße 7, D-30159 Hannover, Deutschland
Dr. Oliver Werth, OFFIS e.V. – Institute for Information Technology, https://orcid.org/0000-0002-6767-5905, Escherweg 2, D-26121 Oldenburg, Deutschland
Gottfried Wilhelm Leibniz Universität Hannover, Institut für Versicherungsbetriebslehre, Otto-Brenner-Straße 7, D-30159 Hannover, Deutschland
Prof. Dr. Michael H. Breitner, Gottfried Wilhelm Leibniz Universität Hannover, Institut für Wirtschaftsinformatik, Königsworther Platz 1, D-30167 Hannover, Deutschland
References
-
Amini, M./Salimi, S./Yousefinejad, F./Tarokh, M. J./Haybatollahi, S. M. (2021): The Implication of Business Intelligence in Risk Management: A Case Study in Agricultural Insurance. Journal of Data, Information and Management 3(2), 155–166.
Google Scholar -
Baars, H./Zimmer, M./Kemper, H. G. (2009): The ICT Convergence Discourse in the Information Systems Literature – A Second-Order Observation. In: Proceedings of the 17th European Conference on Information Systems (ECIS), Verona, Italy, June 8–10, 2009.
Google Scholar -
Catlin, T./Hartmann, R./Segev, I./Tentis, R. (2015): The Making of a Digital Insurer: The Path to Enhanced Profitability, Lower Costs and Stronger Customer Loyalty. http://www.mckinsey.com/industries/financial-services/our-insights/the-making-of-a-digital-insurer, accessed 11 Dec. 2022.
Google Scholar -
Chee, T./Chan, L./Chuah, M./Tan, C./Wong, S./Yeoh, W. (2009): Business Intelligence Systems: State-of-the-art Review and Contemporary Applications. In: Proceedings of the 2009 Symposium on Progress in Information and Communication Technology (SPICT’09), Kuala Lumpur, Malaysia, December 7–8, 2009.
Google Scholar -
Chung, W. (2009): Enhancing Business Intelligence Quality with Visualization: An Experiment on Stakeholder Network Analysis. Pacific Asia Journal of the Association for Information Systems 1(1), 33–54.
Google Scholar -
Curko, K./Bach, M. P./Radonic, G. (2007): Business Intelligence and Business Process Management in Banking Operations. In: Proceedings of the 29th International Conference on Information Technology Interfaces (ITI), Cavtat, Croatia, June 25–28, 2007.
Google Scholar -
Davenport, T. H. (2014): How Strategists Use “Big Data” to Support Internal Business Decisions, Discovery and Production. Strategy & Leadership 42(4), 45–50.
Google Scholar -
Dreyer, S./Werth, O./Olivotti, D./Guhr, N./Breitner, M. H. (2022): Knowledge Management Systems for Smart Services: A Synthesis of Design Principles. e-Service Journal 13(2), 27–67.
Google Scholar -
Eckert, C./Eckert, J./Zitzmann, A. (2021): The Status Quo of Digital Transformation in Insurance Sales: An Empirical Analysis of the German Insurance Industry. Zeitschrift für die gesamte Versicherungswissenschaft 110(2), 133–155.
Google Scholar -
Eckert, C./Osterrieder, K. (2020): How Digitalization affects Insurance Companies: Overview and Use Cases of Digital Technologies. Zeitschrift für die gesamte Versicherungswissenschaft 109(5), 333–360.
Google Scholar -
Eggert, M./Alberts, J. (2020): Frontiers of Business Intelligence and Analytics 3.0: A Taxonomy-based Literature Review and Research Agenda. Business Research 13(2), 685–739.
Google Scholar -
Eling, M./Lehmann, M. (2018): The Impact of Digitalization on the Insurance Value Chain and the Insurability of Risks. The Geneva Papers on Risk and Insurance–Issues and Practice 43(3), 359–396.
Google Scholar -
Eling, M./Nuessle, D./Staubli, J. (2022): The Impact of Artificial Intelligence Along the Insurance Value Chain and on the Insurability of Risks. The Geneva Papers on Risk and Insurance–Issues and Practice 47(2), 205–241.
Google Scholar -
Gehra, B./Gentsch, P./Hess, T. (2005): Business Intelligence for the Masses. Controlling & Management Review 49(3), 236–242.
Google Scholar -
Gioia, D. A./Corley, K. G./Hamilton, A. L. (2013): Seeking Qualitative Rigor in Inductive Research: Notes on the Gioia Methodology. Organizational Research Methods 16(1), 15–31.
Google Scholar -
Gupta, B./Goul, M./Dinter, B. (2015): Business Intelligence and Big Data in Higher Education: Status of a Multi-Year Model Curriculum Development Effort for Business School Undergraduates, MS Graduates, and MBAs. Communications of the Association for Information Systems 36(1), 450–476.
Google Scholar -
Helfand, R. D. (2017): Big Data and Insurance: What Lawyers Need to Know and Understand. Journal of Internet Law 21(3), 2–35.
Google Scholar -
Hsieh, H.-F./Shannon, S. E. (2005): Three Approaches to Qualitative Content Analysis. Qualitative Health Research 15(9), 1277–1288.
Google Scholar -
Huang, Z. X./Savita, K. S./Dan-yi, L./Omar, A. H. (2022): The Impact of Business Intelligence on the Marketing with Emphasis on Cooperative Learning: Case-study on the Insurance Companies. Information Processing & Management 59(2), 1–10.
Google Scholar -
Keller, B. (2018): Big Data and Insurance: Implications for Innovation, Competition and Privacy. https://www.genevaassociation.org/research-topics/cyber-and-innovation-digitalization/big-data-andinsurance-implications-innovation, accessed 10 Dec. 2022.
Google Scholar -
Kuckartz, U. (2018): Qualitative Inhaltsanalyse. Methoden, Praxis, Computerunterstützung, 3rd Ed. Beltz Juventa, Weinheim/Basel.
Google Scholar -
Kyper, E. S./Douglas, M. J./Lievano, R. J. (2009): Operational Business Intelligence: Applying Decision Trees to Call Centers. In: Proceedings of the 15th Americas Conference on Information Systems (AMCIS), San Francisco, California, USA, August 6–9, 2009.
Google Scholar -
Mayring, P. (2015): Qualitative Inhaltsanalyse: Grundlagen und Techniken, 12th Ed. Beltz, Weinheim/Basel.
Google Scholar -
Myers, M. D./Newman, M. (2007): The Qualitative Interview in IS Research: Examining the Craft. Information and Organization 17(1), 2–26.
Google Scholar -
Negash, S. (2004): Business Intelligence. Communications of the Association for Information Systems 13(2004), 177–195.
Google Scholar -
Ngai, E. W./Hu, Y./Wong, Y. H./Chen, Y./Sun, X. (2011): The Application of Data Mining Techniques in Financial Fraud Detection: A Classification Framework and an Academic Review of Literature. Decision Support Systems 50(3), 559–569.
Google Scholar -
Petrini, M./Pozzeborn, M. (2008): What Role is “Business Intelligence” Playing in Developing Countries? A Picture of Brazilian Companies. In: Rahman, H. (Hrsg.) Data Mining Applications for Empowering Knowledge Societies, S. 237–257. Information Science Reference, Hershey, New York.
Google Scholar -
Phillips-Wren, G./Daly, M./Burstein, F. (2021): Reconciling Business Intelligence, Analytics and Decision Support Systems: More Data, Deeper Insight. Decision Support Systems 146(2021), 1–10.
Google Scholar -
Rostek, K. (2009): Business Intelligence for Insurance Companies. Foundations of Management 1(1), 65–82.
Google Scholar -
Schmidt, C. (2018): Insurance in the Digital Age: A View on Key Implications for the Economy and Society. https://www.genevaassociation.org/sites/default/files/research-topics-document-type/pdf_public/insurance_in_the_digital_age_01.pdf, accessed 11 Dec. 2022.
Google Scholar -
Schnell, R./Hill, P. B./Esser, E. (2011): Methoden der empirischen Sozialforschung, 9th Ed. Oldenbourg, München.
Google Scholar -
Schulte-Noelle, H. (2001): Technological Changes in IT and Their Influence on Insurance: The Change Ahead (I). The Geneva Papers on Risk and Insurance – Issues and Practice 26(1), 83–88.
Google Scholar -
Schultze, U./Avital, M. (2011): Designing Interviews to Generate Rich Data for Information Systems Research. Information and Organization 21(1), 1–16.
Google Scholar -
Toreini, P./Langner, M./Maedche, A./Morana, S./Vogel, T. (2022): Designing Attentive Information Dashboards. Journal of the Association for Information Systems 23(2), 521–552.
Google Scholar -
Trieu, V. H./Burton-Jones, A./Green, P./Cockcroft, S. (2022): Applying and Extending the Theory of Effective Use in a Business Intelligence Context. MIS Quarterly 46(1), 645–678.
Google Scholar -
Wanda, P./Stian, S. (2015): The Secret of my Success: An Exploratory Study of Business Intelligence Management in the Norwegian Industry. Procedia Computer Science 64(2015), 240–247.
Google Scholar -
Watson, H. J. (2009): Business Intelligence – Past, Present, and Future. In: Proceedings of the 15th Americas Conference on Information Systems (AMCIS), San Francisco, California, USA, August 6–9, 2009.
Google Scholar -
Werth, O./Schwarzbach, C./Rodríguez Cardona, D./Breitner, M. H./Graf von der Schulenburg, J.-M. (2020): Influencing Factors for the Digital Transformation in the Financial Services Sector. Zeitschrift für die gesamte Versicherungswissenschaft 109(2), 155–179.
Google Scholar -
Yin, R. K. (2009): Case Study Research: Design and Methods. 4th Ed. SAGE Publications, Thousand Oaks, CA, London/New Delhi.
Google Scholar
Abstract
Im Rahmen der digitalen Transformation bieten neue Analyseverfahren und Visualisierungen für Versicherungsunternehmen die Möglichkeit bestehende Geschäftsprozesse zu unterstützen, neue Geschäftsprozesse zu ermöglichen und neue Kunden zu gewinnen. Insbesondere infolge einer schnellen, hochwertigen und intuitiven Datenaufbereitung können erhebliche Wettbewerbsvorteile generiert werden. Business Intelligence (BI) Systeme unterstützen und ermöglichen dabei die Datenverarbeitung und sind in Finanzdienstleistungsunternehmen von besonderem Interesse, da große Datenmengen an Kundeninformationen wertschöpfend genutzt werden können. Mit qualitativen Interviews mit Experten aus der deutschen Versicherungsbranche untersucht dieser Beitrag die aktuellen Einsatzpotentiale von BI in Versicherungsunternehmen sowie die mit der Einführung und Nutzung resultierenden Chancen und Herausforderungen. Die Ergebnisse und Erkenntnisse zeigen, dass der Einsatz von BI als vorteilhaft angesehen wird und die Nutzung in Versicherungsunternehmen deutlich zunehmen wird, da potentielle Einsatzmöglichkeiten derzeit ungenügend ausgeschöpft werden. Unsere Forschung unterstützt auch den Entscheidungsprozess von Praktikern, in welchem Umfang die Implementierung von BI sinnvoll ist.