Exploring New Challenges for Street-Level Bureaucrats through the Implementation of ADM Systems
JOURNAL ARTICLE
Cite JOURNAL ARTICLE
Style
Format
Exploring New Challenges for Street-Level Bureaucrats through the Implementation of ADM Systems
Sozialer Fortschritt, Vol. 71 (2022), Iss. 6–7 : pp. 447–464
Additional Information
Article Details
Pricing
Author Details
Hartmann, Kathrin, TU Kaiserslautern, Chair of Policy Analysis and Political Economy, Postbox 3049, 67653 Kaiserslautern.
References
-
Allhutter, D./Cech, F./Fischer, F./Gand, G./Mager, A. (2020): Algorithmic Profiling of Job Seekers in Austria: How Austerity Politics Are Made Effective. Front. Big Data 3:5, https://doi.org/10.3389/fdata.2020.00005.
Google Scholar -
Angwin, J./Larson, J./Mattu, S./Kirchner, L. (2016): Machine bias—There’s software used across the country to predict future criminals. And it’s biased against blacks, ProPublica, https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.
Google Scholar -
Arbeitsmarktservice Österreich [n.d.]: Beratung im AMS, https://www.ams.at/arbeitsuchende/arbeitslos-was-tun/beratung-im-ams [30.07.2021].
Google Scholar -
Berk, R. (2017): An impact assessment of machine learning risk forecasts on parole board decisions and recidivism, Journal of Experimental Criminology, 13(2): S. 193–216, https://doi.org/10.1007/s11292-017-9286-2.
Google Scholar -
Cohen, J. E. (2012): Configuring the Networked Self. New Haven: Yale University Press.
Google Scholar -
Dietvorst, B./Simmons, J. P./Massey, C. (2015): Algorithm Aversion: People Erroneously Avoid Algorithms after Seeing Them Err, Journal of Experimental Psychology: General, 144 (1): S.114–126.
Google Scholar -
Dietvorst, B./Simmons, J. P./Massey, C. (2016): Overcoming Algorithm Aversion: People will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them, Management Science, 64 (3), S.1155–1170, http://dx.doi.org/10.1287/mnsc.2016.2643.
Google Scholar -
Dietvorst, B./Simmons, J. P./Massey, C. (2018): Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them. Manag. Sci., 64: S. 1155–1170.
Google Scholar -
Gamper, J./Kernbeiß, G./Wagner-Pinter, M. (2020): Das Assistenzsystem AMAS. Zweck, Grundlagen, Anwendung. Wien: Syntheses Forschung GmbH.
Google Scholar -
Grenet, J. (2018): Orientation postbac: Une question technique ou politique?, Administration & Éducation, 159(3), S. 123–127, https://doi.org/10.3917/admed.159.0123.
Google Scholar -
Hartmann, K./Wenzelburger, G. (2021): Uncertainty, risk and the use of algorithms in policy decisions: a case study on criminal justice in the USA, Policy Sciences 54: S. 269–287, https://doi.org/10.1007/s11077-020-09414-y.
Google Scholar -
Holl, J./Kernbeiß, G./Wagner-Pinter, M. (2018): Das AMS-Arbeitsmarktchancen-Modell, Wien: Synthesis Forschung GmbH.
Google Scholar -
Juravle, G./Boudouraki, A./Terziyska, M./Rezlescu, C. (2020): Trust in artificial intelligence for medical diagnoses, 253: S. 263–282, https://doi.org/10.1016/bs.pbr.2020.06.006.
Google Scholar -
Kerler, M./Steiner, K. (2018): Mismatch am Arbeitsmarkt: Indikatoren, Handlungsfelder und Matching-Strategien im Wirkungsbereich von Vermittlung und Beratung, AMS report No. 133, Wien: Arbeitsmarktservice Österreich, http://hdl.handle.net/10419/206696.
Google Scholar -
Lepri, B./Oliver, A./Letouzé, E./Pentland, A./Vinck, P. (2018): Fair, Transparent, and Accountable Algorithmic Decision-making Processes: The Premise, the Proposed Solutions, and the Open Challenges, Philosophy & Technology 31 (4): S. 611–627.
Google Scholar -
Logg, J. M./Minson, J. A./Moore, D. A. (2019): Algorithm appreciation: People prefer algorithmic to human judgment, Organizational Behavior and Human Decision Processes 151: S. 90–103.
Google Scholar -
Lopez, P. (2019): Reinforcing Intersectional Inequality via the AMS Algorithm in Austria, Conference Proceedings of the STS Conference Graz 2019, 6th–7th May 2019, S. 289–309, DOI: 10.3217/978-3-85125-668-0-16.
Google Scholar -
Mayring, P. (2010): Qualitative Inhaltsanalyse. Grundlagen und Techniken, Weinheim und Basel.
Google Scholar -
Mittelstadt, B. D./Allo, P./Taddeo, M./Wachter, S./Floridi, L. (2016): The ethics of algorithms: Mapping the debate, Big Data & Society 3 (2): S. 1–21.
Google Scholar -
Österreichischer Rechnungshof (2017): Bericht des Rechnungshofes, S. 90, https://www.rechnungshof.gv.at [20.07.2021].
Google Scholar -
Pasquale, F. (2016): The black box society. The secret algorithms that control money and information, Cambridge: Harvard University Press.
Google Scholar -
Stevenson, M. (2018): Assessing risk assessment in action. Minnesota Law Review 103, S. 303–384.
Google Scholar -
van Zanten, A./Legavre, A. (2014): Engineering access to higher education through higher education fairs. In: Goastellec,G./Picard,F. (Eds.), Higher education in societies: A multi scale perspective, Rotterdam, S. 183–203.
Google Scholar -
Veale, M./Brass, I. (2019): Administration by Algorithm? Public Management meets Public Sector Machine Learning. In: Karen Yeung and Martin Lodge eds.: Algorithmic Regulation, Oxford.
Google Scholar -
Yeomans, M./Shah, A./Mullainathan, S./Kleinberg, J. (2019): Making Sense of Recommendations, Journal of Behavioral Decision Making 32 (4), S. 403–414.
Google Scholar -
Yeung, K. (2017): ‘Hypernudge’: Big Data as a mode of regulation by design, Information, communication and society, 20 (1), S.118–136, https://doi.org/10.1080/1369118X.2016.1186713.
Google Scholar -
Yeung, K. (2018). Algorithmic regulation: A critical interrogation, Regulation & Governance, 12 (4), S. 505–523, https://doi.org/10.1111/rego.12158.
Google Scholar -
Zweig, K. A./Wenzelburger, G./Krafft, T. D. (2018): On chances and risks of security related algorith-mic decision making systems, European Journal for Security Research, https://doi.org/10.1007/s41125-018-0031-2.
Google Scholar
Abstract
The implementation of algorithms to inform decision-making has been shown to raise issues of quality, fairness, and accountability. However, the consequences of this technology can only really be understood by focusing on the actors using the technology in their daily working routines. It is therefore crucial to understand how decision-making processes change when algorithms are put into practice and to analyse street-level bureaucrats’ perceptions of these algorithms. This paper addresses this question with a case study on the Austrian algorithm-based decision-making system AMAS, which is designed to assist street-level bureaucrats in the Austrian employment service (AMS) through profiling job seekers.
Table of Contents
Section Title | Page | Action | Price |
---|---|---|---|
Kathrin Hartmann: Exploring New Challenges for Street-Level Bureaucrats through the Implementation of ADM Systems | 1 | ||
Abstract | 1 | ||
Zusammenfassung: Die Untersuchung neuer Herausforderungen für ‚Street-Level Bureaucrats‘ durch die Implementierung von ADM-Systemen | 1 | ||
1. Introduction | 2 | ||
2. Human Motives for Algorithm Aversion and Algorithm Appreciation | 3 | ||
3. Conducting the Case Study: Methods und Data | 6 | ||
4. How Decisions are Made: From Structuring the Consulting Processes to Decision-Making in the AMS | 7 | ||
4.1 ADM Systems in the Public Employment Agency: The Case of AMAS | 8 | ||
4.2 The ADM Tool AMAS | 9 | ||
4.3 Putting Actors at Stage | 1 | ||
5. Conclusion | 1 | ||
References | 1 |