Alternative Model Specifications for Implied Volatility Measured by the German VDAX
JOURNAL ARTICLE
Cite JOURNAL ARTICLE
Style
Format
Alternative Model Specifications for Implied Volatility Measured by the German VDAX
Wagner, Niklas | Szimayer, Alexander
Credit and Capital Markets – Kredit und Kapital, Vol. 34 (2001), Iss. 4 : pp. 590–618
Additional Information
Article Details
Author Details
Niklas Wagner, Dresden/Berkeley
Alexander Szimayer, Bonn
References
-
Beinert, M., Trautmann, S. (1991): Jump-Diffusion Models of German Stock Returns - A Statistical Investigation, Statistical Papers 32: 269-280.
Google Scholar -
Bookstaber, R., M., Pomerantz, S. (1989): An Information Based Model of Market Volatility, Financial Analysts Journal 45: 37-46.
Google Scholar -
Brenner, M., Galai, S. (1989): New Financial Instruments for Hedging Changes in Volatility, Financial Analysts Journal 45: 61-65.
Google Scholar -
Brenner, M., Ou, E. Y., and Zhang, J. E. (2000): Hedging Volatility Risk, Working Paper, Stern School of Business, New York University, November 2000.
Google Scholar -
Bühler, A., Grünbichler, A. (1996): Derivative Produkte auf Volatilität: Zum empirischen Verhalten eines Volatilitätsindex, Zeitschrift für Betriebswirtschaft 66: 607-625.
Google Scholar -
Campbell, J., Y., Lo, A., W., MacKinlay, A., C. (1997): The Econometrics of Financial Markets, Princeton University Press, Princeton.
Google Scholar -
Chan, K., C., Karo-Iyi, G., A., Longstaff, F., A., Sanders, A., B. (1992): An Empirical Comparison of Alternative Models of the Short-Term Interest Rate, Journal of Finance 48: 1209-1227.
Google Scholar -
Cox, J., C., Ingersoll, J., E., Ross, S., A. (1985a): An Intertemporal General Equilibrium Model of Asset Prices, Econometrica 53: 363-384.
Google Scholar -
Cox, J., C., Ingersoll, J., E., Ross, S., A. (1985b): A Theory of the Term Structure of Interest Rates, Econometrica 53: 385-407.
Google Scholar -
Deutsche Börse AG (ed.) (1997): VOLAX-Future, Frankfurt am Main.
Google Scholar -
Fleming, J., Ostdiek, B., Whaley, R. E. (1995): Predicting Stock Market Volatility: A New Measure, Journal of Futures Markets 15: 265-302.
Google Scholar -
Franks, J., R., Schwartz, E., S. (1991): The Stochastic Behaviour of Market Variance Implied in the Prices of Index Options, Economic Journal 15: 265-302.
Google Scholar -
French, K., G., Schwert, W., Stambaugh, R. (1987): Expected Stock Returns and Volatility, Journal of Financial Economics 19: 3-30.
Google Scholar -
Greene, W., H. (1997): Econometric Analysis, 3rd. ed., Prentice Hall, New York.
Google Scholar -
Grünbichler, A., Longstaff, F., A. (1996): Valuing Futures and Options on Volatility, Journal of Banking and Finance 6: 985-1001.
Google Scholar -
Hamilton, J., D. (1994): Time Series Analysis, Princeton University Press, Princeton.
Google Scholar -
Hansen, L., P. (1982): Large Sample Properties of Generalized Method of Moments Estimators, Econometrica 50: 1029-1054.
Google Scholar -
Heston, S., L. (1993): A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, Review of Financial Studies 6: 327-343.
Google Scholar -
Hull, J., C. (1997): Options, Futures and Other Derivatives, 3rd ed., Prentice-Hall, Upper Saddle River.
Google Scholar -
Hull, J., C., White, A. (1987): The Pricing of Options on Assets with Stochastic Volatility, Journal of Finance 42: 281-300.
Google Scholar -
Johnson, N., L., Kotz, S. (1969): Discrete Distributions, Wiley, New York, Chichester.
Google Scholar -
Johnson, N., L., Kotz, S., Balakrishnan, N. (1994): Continuous Univariate Distributions, Volume 1, 2nd. ed., Wiley, New York, Chichester.
Google Scholar -
Locarek-Junge, H., Roth, R. (1998): Hedging Volatility Risk with the VOLAX Future - Theoretical Concept and First Evidence, CBOT Research Symposium Proceedings Winter 1998, pp. 105-120.
Google Scholar -
Marsh, T., A., Rosenfeld, E. (1983): Stochastic Processes for Interest Rates and Equilibrium Bond Prices, Journal of Finance 38: 635-646.
Google Scholar -
Merton, R., C. (1976): Option Pricing when Underlying Stock Returns are Discontinuous, Journal of Financial Economics 3: 125-144.
Google Scholar -
Nagel, H., Schöbel, R. (1999): Volatility and GMM - Monte Carlo Simulations and Empirical Estimations, Statistical Papers 40: 297-321.
Google Scholar -
Newey, W., West, K. (1987a): A Simple Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix, Econometrica 55: 703-708.
Google Scholar -
Newey, W., West, K. (1987b): Hypothesis Testing with Efficient Method of Moments Estimation, International Economic Review 28: 777-787.
Google Scholar -
Newey, W., West, K. (1994): Automatic Lag Selection in Covariance Matrix Estimation, Review of Economic Studies 61: 631-653.
Google Scholar -
Protter, P., (1995): Stochastic Integration and Differential Equations, 3rd. ed., Springer, Berlin, Heidelberg. - Redelberger, T. (1994): Grundlagen und Konstruktion des VDAX- Volatilitätsindex der Deutsche Börse AG, Manuskript, November 1994.
Google Scholar -
Schwert, G., W. (1989): Why Does Stock Market Volatility Change Over Time?, Journal of Finance 44: 1115-1153.
Google Scholar -
Szimayer, A., Wagner, N. (1998): Modeling Volatility: Estimation Results for the German Stock Market, in: Nakhaeizadeh, G., Steurer, E. (eds.): Application of Machine Learning and Data Mining in Finance, Chemnitzer Informatik-Berichte CSR-98-06, pp. 37-45.
Google Scholar -
Trautmann, S., Beinert, M. (1995): Stock Price Jumps and their Impact on Option Valuation, Working Paper, University of Mainz.
Google Scholar -
Wagner, N., Szimayer, A. (2001): Implied Stock Market Volatility Measured by VIX and VDAX, EFMA Working Paper, January 2001.
Google Scholar -
Whaley, R., E. (1993): Derivatives on Market Volatility - Hedging Tools Long Overdue, Journal of Derivatives 1: 71-84.
Google Scholar -
Wiggins, J. (1987): The Pricing of Options with Stochastic Volatility, Journal of Financial Economics 19: 351-372.
Google Scholar
Abstract
Alternative Model Specifications for Implied Volatility Measured by the German VDAX
In this paper, two nested model specifications for the stochastic behavior of the German stock market volatility index VDAX are compared based on a sample of index observations. Following the literature, the well-known mean reverting diffusion model serves as the standard model specification. The second model specification is an extension which allows for discontinuous changes in the series. The estimation results for the VDAX indicate that the empirical observations do not confirm the moment restrictions given by the standard model. While, at the given confidence level, this yields to a rejection of the mean reverting diffusion model, the extended specification cannot be rejected providing significant evidence of a positive jump component. An application of the mean reverting jump diffusion model is given in a risk-neutral option pricing framework. Simulated option prices reveal economically and statistically significant price differences not only depending on the choice of the model specification but also due to the consideration of the jump component itself. (JEL C13, C15, C22, G13)