Menu Expand

Stabilitätsanalyse der bundesdeutschen Geldnachfrage anhand alternativer Ansätze zur Modellierung variierender Regressionskoeffizienten

Cite JOURNAL ARTICLE

Style

Lütkepohl, H., Moryson, M., Wolters, J. Stabilitätsanalyse der bundesdeutschen Geldnachfrage anhand alternativer Ansätze zur Modellierung variierender Regressionskoeffizienten. Credit and Capital Markets – Kredit und Kapital, 28(1), 107-133. https://doi.org/10.3790/ccm.28.1.107
Lütkepohl, Helmut; Moryson, Martin and Wolters, Jürgen "Stabilitätsanalyse der bundesdeutschen Geldnachfrage anhand alternativer Ansätze zur Modellierung variierender Regressionskoeffizienten" Credit and Capital Markets – Kredit und Kapital 28.1, 1995, 107-133. https://doi.org/10.3790/ccm.28.1.107
Lütkepohl, Helmut/Moryson, Martin/Wolters, Jürgen (1995): Stabilitätsanalyse der bundesdeutschen Geldnachfrage anhand alternativer Ansätze zur Modellierung variierender Regressionskoeffizienten, in: Credit and Capital Markets – Kredit und Kapital, vol. 28, iss. 1, 107-133, [online] https://doi.org/10.3790/ccm.28.1.107

Format

Stabilitätsanalyse der bundesdeutschen Geldnachfrage anhand alternativer Ansätze zur Modellierung variierender Regressionskoeffizienten

Lütkepohl, Helmut | Moryson, Martin | Wolters, Jürgen

Credit and Capital Markets – Kredit und Kapital, Vol. 28 (1995), Iss. 1 : pp. 107–133

Additional Information

Article Details

Author Details

Helmut Lütkepohl, Berlin

Martin Moryson, Berlin

Jürgen Wolters, Berlin

References

  1. Anderson, B. D. O. & J. B. Moore (1979), Optimal Filtering, Englewood Cliffs, NJ: Prentice-Hall.  Google Scholar
  2. Aoki, M. (1987), State Space Modeling of Time Series, Berlin: Springer-Verlag.  Google Scholar
  3. Box, G.E.P. & G. C. Tiao (1976), „Comparison of Forecast and Actuality,“ Applied Statistics, 29, 87 - 92. - Brown, R. L., J. Durbin & J. M. Evans (1975), „Techniques for Testing the Constancy of Regression Relationships over Time,“ Journal of the Royal Statistical Society, B37, 149 - 163.  Google Scholar
  4. Buscher, H. S. (1984), „The Stability of the West German Demand for Money 1965 - 1987,“ Weltwirtschaftliches Archiv, 120, 256 - 278.  Google Scholar
  5. Cleveland, W.S. (1979), „Robust Locally-Weighted Regression and Smoothing Scatterplots,“ Journal of the American Statistical Association, 74, 829 - 836.  Google Scholar
  6. Cleveland, W. S., S. J. Devlin & E. Grosse (1988), „Regression by Local Fitting,“ Journal of Econometrics, 37, 87 - 114.  Google Scholar
  7. Cooley, T. & E. Prescott (1973), „Varying Parameter Regression, A Theory and Some Applications,“ Annals of Economic and Social Measurement, 2, 463 - 474.  Google Scholar
  8. Cooley, T. & E. Prescott (1976), „Estimation in the Presence of Stochastic Parameter Variation,“ Econometrica, 44, 167 - 184.  Google Scholar
  9. Deutsche Bundesbank (1991) „Macro-econometric Model of the German Economy,“ April 1991.  Google Scholar
  10. Doornik, J. A. & D. F. Hendry (1992), PcGive: An Interactive Econometric Modelling System, Institute of Economics and Statistics, University of Oxford.  Google Scholar
  11. Dufour, J. M. (1982), „Recursive Stability Analysis of Linear Regression Relationships,“ Journal of Econometrics, 19, 31 - 76.  Google Scholar
  12. Epstein, R. J. (1987), A History of Econometrics, Amsterdam: North-Holland.  Google Scholar
  13. Ericsson, N. R., J. Campos & H.-A. Tran (1990), „PC-Give and David Hendry’s Econometric Methodology,“ Revista de Econometria, 10, 7 - 117.  Google Scholar
  14. Fahrmeir, L. (1991), „Zustandsraummodelle: Filtern, Glätten und Prognose dynamischer Systeme,“ Allgemeines Statistisches Archiv, 75, 53 - 74.  Google Scholar
  15. Fedorov, V. V., P. Hackl & W. Müller (1993), „Moving Local Regression: The Weight Function,“ Journal of Nonparametric Statistics, 3, 355 - 368.  Google Scholar
  16. Gaab, W. & H. Seitz (1988), Zur Frage der Stabilität der Geldnachfrage M1 in der Bundesrepublik Deutschland, in: W. Franz, W. Gaab, J. Wolters (Hrsg.), Theoretische und angewandte Wirtschaftsforschung, Berlin, Springer-Verlag, 93 - 121.  Google Scholar
  17. Goldfeld, S. M. (1973), „The Demand for Money Revisited,“ Brookings Papers on Economic Activity, 3, 577 - 632.  Google Scholar
  18. Gordon, R. J. (1984), The Short-Run Demand for Money: A Reconsideration, Journal of Money, Credit and Banking, 16, 403 - 434.  Google Scholar
  19. Haase, K., H. Lütkepohl, H. Claessen, M. Moryson & W. Schneider (1992), MulTi-A Menu-Driven GAUSS Program for Multiple Time Series Analysis, Institut für Statistik und Ökonometrie, Universität Kiel, Kiel, Germany.  Google Scholar
  20. Hackl, P. & A. H. Westlund (1992), „Demand for International Telecommunication: Time-Varying Price Elasticity,“ Paper presented at the C.R.D.E./Journal of Econometrics Workshop on Recent Developments in the Econometrics of Structural Change, Montreal.  Google Scholar
  21. Harvey, A. C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge: Cambridge University Press.  Google Scholar
  22. Hendry, D.F. & N. R. Ericsson (1991) „Modeling the Demand for Narrow Money in the United Kingdom and the United States,“ European Economic Review, 35, 833 - 881.  Google Scholar
  23. Hildreth, C. & J. P. Houck (1968), „Some Estimators for a Linear Model with Random Coefficients,“ Journal of the American Statistical Association, 63, 584 - 595.  Google Scholar
  24. Issing, O. (1993), Einführung in die Geldpolitik, München: Verlag Franz Vahlen.  Google Scholar
  25. Jazwinski, A. H. (1970), Stochastic Processes and Filtering Theory, New York: Academic Press.  Google Scholar
  26. Judd. J. P. & J. L. Scadding (1982), „The Search for a Stable Money Demand Function: A Survey of the Post-1973 Literature,“ Journal of Economic Literature, 20, 993 - 1023.  Google Scholar
  27. Kalaba, R. & L. Tesfatsion (1988), „The Flexible Least Squares Approach to Time Varying Linear Regression,“ Journal of Economic Dynamics and Control, 12, 43 - 48.  Google Scholar
  28. Kalaba, R. & L. Tesfatsion (1989), „Time-Varying Linear Regression via Flexible Least Squares,“ Computers and Mathematics with Applications, 17,.1215 - 1245.  Google Scholar
  29. Kalaba, R. & L. Tesfatsion (1990), „Flexible Least Squares for Approximately Linear Systems,“ IEEE Transactions on Systems, Man, and Cybernetics, SMC-20, 978 - 989.  Google Scholar
  30. Kendall, M. (1973), Time-Series, London: Charles Griffin.  Google Scholar
  31. Krämer, W., W. Ploberger & R. Alt (1988), „Testing for Structural Change in Dynamic Models,“ Econometrica, 56, 1355 - 1369.  Google Scholar
  32. Lütkepohl, H. (1988), „Prediction Tests for Structural Stability,“ Journal of Econometrics, 39, 267 - 296.  Google Scholar
  33. Lütkepohl, H. (1991), Introduction to Multiple Time Series Analysis, Berlin: Springer-Verlag.  Google Scholar
  34. Lütkepohl, H. (1993), „The Sources of the U.S. Money Demand Instability,“ Empirical Economics, 18, 729 - 743.  Google Scholar
  35. Lütkepohl, H. & H. Herwartz (1992), „Specification of Varying Coefficient Time Series Models via Generalized Flexible Least Squares,“ Paper presented at the C.R.D.E./Journal of Econometrics Workshop on Recent Developments in the Econometrics of Structural Change, Montreal.  Google Scholar
  36. Neumann, M. J. M. & J. v. Hagen (1987), Theoretische und empirische Grundlagen von Geldmengenzielen, in: A. Gutowski (Hrsg.), Geldpolitische Regelbindung: Theoretische Entwicklungen und empirische Befunde, Duncker und Humblot, Berlin. - Schlittgen, R. & B. H. J.  Google Scholar
  37. Streitberg (1984), Zeitreihenanalyse, München: Oldenburg Verlag.  Google Scholar
  38. Schneider, W. (1986), Der Kalmanfilter als Instrument zur Diagnose und Schätzung variabler Parameter in ökonometrischen Modellen, Heidelberg: Physica-Verlag.  Google Scholar
  39. Schneider, W. (1988), „Analytical Uses of Kalman Filtering in Econometrics-A Survey,“ Statistical Papers, 29, 3 - 33.  Google Scholar
  40. Schneider, W. (1992), „Systems of Seemingly Unrelated Regression Equations with Time-Varying Coefficients - An Interplay of Kalman Filtering, Scoring, EM- and Minque-Method,“ Computers and Mathematics with Applications, 24, 1 - 16.  Google Scholar
  41. Swamy, P. A. V. B. (1971), Statistical Inference in Random Coefficient Regression Models, Berlin: Springer-Verlag.  Google Scholar
  42. Tesfatsion, L. & J. Veitch (1990), „U.S. Money Demand Instability: A Flexible Least Squares Approach,“ Journal of Economic Dynamics and Control, 14, 151 - 173.  Google Scholar
  43. Varman-Schneider, B. & W. Schneider (1990), „Measuring Capital Flight: A Time Varying Regression Analysis with Special Reference to the Philippines and India,“ ASEAN Economic Bulletin, 7, 54 - 83.  Google Scholar
  44. Wei, W. W. S. (1990), Time Series Analysis: Univariate and Multivariate Methods, Redwood City, CA: Addison-Wesley.  Google Scholar
  45. Westphal, V. (1991), „Comments on ‚Modeling the demand for narrow money in the United Kingdom and the United States‘ by David F. Hendry and Neil R. Ericsson,“ European Economic Review, 35, 883 - 886.  Google Scholar

Abstract

Stability Analysis of Money Supply in the Federal Republic of Germany on the Basis of Alternative Approaches to Developing Models for Varying Regression Coefficients

This paper includes a description of a number of possibilities for developing models for varying regression coefficients as well as a comparison of such possibilities within the framework of a money demand analysis for money supply Mi in the Federal Republic of Germany in the period 1960 to 1990. Against the background of the current upheavals in Eastern Europe, these procedures are gaining in special relevance. It turns out that the various options for developing models may lead to highly different results regarding possible instabilities of regression relations, but that the use of different procedures may improve diagnosing possibilities, because all procedures suffer from certain weaknesses. It becomes clear in particular that procedures making use of only part of the sample-based information are not necessarily inferior to those approaches that benefit from the whole information at any given estimating moment.