Eine Einführung in die arbitragefreie Bewertung von Derivaten in stetiger Zeit am Beispiel europäischer Devisenoptionen
JOURNAL ARTICLE
Cite JOURNAL ARTICLE
Style
Format
Eine Einführung in die arbitragefreie Bewertung von Derivaten in stetiger Zeit am Beispiel europäischer Devisenoptionen
Credit and Capital Markets – Kredit und Kapital, Vol. 27 (1994), Iss. 4 : pp. 591–627
Additional Information
Article Details
Author Details
Frank B. Lehrbass, Dortmund
References
-
Bauer, H., 1991: Wahrscheinlichkeitstheorie. Berlin: de Gruyter. - Black, F., Scholes, M., 1973: The Pricing of Options and Corporate Liabilities, J of Political Economy 81, 637 - 654.
Google Scholar -
Brauner, R., Geiß, F., 1990: Das Abitur-Wissen Mathematik. Frankfurt am Main: Fischer.
Google Scholar -
Brock, W. A., Malliaris, A. G., 1982: Stochastic Methods in Economics and Finance. New York: Elsevier.
Google Scholar
Abstract
An Introductory to Continuous-Scale Derivatives Evaluation in a Non-Arbitrage Environment on the Basis of the Example of European Foreign-Exchange Options
The legendary evaluation formulae of Black/Scholes (1973) and Garman/Kohlhagen (1983) are explained in great detail in a didactically attractive manner. To begin with, two fundamental discoveries concerning the option price theory are explained with the help of a simple binomial model: independence of optionrights evaluations from market participants’ risk-acceptance propensity and the resultant possibility of evaluating option rights in an imaginary risk-free environment. This is followed by a model reflecting the dynamism of prices - Brown’s geometric progression. This is the basis of the Garman/Kohlhagen differential equation, which provides the justification of the two aforementioned fundamental discoveries pertaining to the continuous-scale evaluations. With the help of evaluations in a risk-free environment, the Garman/Kohlhagen formula is subsequently developed, which includes the Black /Scholes formula describing a special case. Reading this introductory presupposes nothing more than “A-level knowledge of mathematics”.