Industrial Output Growth Forecast: A Machine Learning Approach Based on Cross-Validation
JOURNAL ARTICLE
Cite JOURNAL ARTICLE
Style
Format
Industrial Output Growth Forecast: A Machine Learning Approach Based on Cross-Validation
Marcondes Pinto, Jeronymo | Marçal, Emerson Fernandes
Applied Economics Quarterly, Vol. 67 (2021), Iss. 4 : pp. 337–351
Additional Information
Article Details
Pricing
Author Details
Jeronymo Marcondes Pinto, Corresponding author. Esplanada dos Ministérios, F Block, Floor 1, Ministry of Economics – SIT, Brasília/DF, Brazil.
Emerson Fernandes Marçal, Sao Paulo School of Economics and CEMAP-EESP-FGV, Rua Itapeva, 286, 10th floor, Sao Paulo – Brazil. Phone: +55-11-3799-3228.
References
-
Arlot, S./Celisse, A. et al. (2010): “A survey of cross-validation procedures for model selection”, Statistics Surveys 4, 40–79.
Google Scholar -
Bates, J. M./Granger, C. W. (1969): “The combination of forecasts”, Journal of the Operational Research Society 20(4), 451–468.
Google Scholar -
Bergmeir, C./Benítez, J. M. (2012): “On the use of cross-validation for time series predictor evaluation”, Information Sciences 191, 192–213.
Google Scholar -
Bergmeir, C./Costantini, M./Benítez, J. M. (2014): “On the usefulness of cross-validation for directional forecast evaluation”, Computational Statistics & Data Analysis 76, 132–143.
Google Scholar -
Bergmeir, C./Hyndman, R. J./Koo, B. et al. (2015): “A note on the validity of cross-validation for evaluating time series prediction”, Monash University Department of Econometrics and Business Statistics Working Paper 10, 15.
Google Scholar -
Chan, F./Pauwels, L. L. (2018): “Some theoretical results on forecast combinations”, International Journal of Forecasting 34(1), 64–74.
Google Scholar -
Cryer, J. D./Kellet, N. (1991): Time Series Analysis, Springer.
Google Scholar -
Fornaro, P./Luomaranta, H. (2020): “Nowcasting Finnish real economic activity: a machine learning approach”, Empirical Economics 58(1), 55–71.
Google Scholar -
Garcia, M. G./Medeiros, M. C./Vasconcelos, G. F. (2017): “Real-time inflation forecasting with high-dimensional models: The case of Brazil”, International Journal of Forecasting 33(3), 679–693.
Google Scholar -
Hamilton, J. D. (1994): Time Series Analysis, Princeton University Press.
Google Scholar -
Hansen, P. R./Lunde, A./Nason, J. M. (2011): “The model confidence set”, Econometrica 79(2), 453–497.
Google Scholar -
Harvey, D./Leybourne, S./Newbold, P. (1997): “Testing the equality of prediction mean squared errors”, International Journal of Forecasting 13(2), 281–291.
Google Scholar -
Hsiao, C./Wan, S. K. (2014): “Is there an optimal forecast combination?”, Journal of Econometrics 178, 294–309.
Google Scholar -
Hyndman, R./Khandakar, Y. (2008): “Automatic Time Series Forecasting: The Forecast Package for R”, Journal of Statistical Software, Articles 27(3), 1–22. doi:10.18637/jss.v027.i03, https://www.jstatsoft.org/v027/i03.
Google Scholar -
James, G./Witten, D./Hastie, T./Tibshirani, R. (2013): An Introduction to Statistical Learning, vol. 112, Springer.
Google Scholar -
Markatou, M./Tian, H./Biswas, S./Hripcsak, G. (2005): “Analysis of variance of cross-validation estimators of the generalization error”, Journal of Machine Learning Research 6(Jul), 1127–1168.
Google Scholar -
McKnight, S./Mihailov, A./Rumler, F. (2019): “Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend”, Economic Modelling.
Google Scholar -
Montero-Manso, P./Athanasopoulos, G./Hyndman, R. J./Talagala, T. S. (2020): “FFORMA: Feature-based forecast model averaging”, International Journal of Forecasting 36(1), 86–92.
Google Scholar -
Murphy, K. P. (2012): Machine learning: a probabilistic perspective, MIT press.
Google Scholar -
Panagiotelis, A./Athanasopoulos, G./Hyndman, R. J./Jiang, B./Vahid, F. (2019): “Macroeconomic forecasting for Australia using a large number of predictors”, International Journal of Forecasting 35(2), 616–633.
Google Scholar -
Pawlikowski, M./Chorowska, A. (2020): “Weighted ensemble of statistical models”, International Journal of Forecasting 36(1), 93–97.
Google Scholar -
Racine, J. (2000): “Consistent cross-validatory model-selection for dependent data: hv-block cross-validation”, Journal of Econometrics 99(1), 39–61.
Google Scholar -
Salinas, D./Flunkert, V./Gasthaus, J./Januschowski, T. (2019): “DeepAR: Probabilistic forecasting with autoregressive recurrent networks”, International Journal of Forecasting 36(3), 1181–1191.
Google Scholar -
Siliverstovs, B. (2020): “Assessing nowcast accuracy of US GDP growth in real time: the role of booms and busts”, Empirical Economics 58(1), 7–27.
Google Scholar -
Smeekes, S./Wijler, E. (2018): “Macroeconomic forecasting using penalized regression methods”, International Journal of Forecasting 34(3), 408–430.
Google Scholar -
Spiliotis, E./Assimakopoulos, V./Makridakis, S. (2020): “Generalizing the Theta method for automatic forecasting”, European Journal of Operational Research.
Google Scholar -
Timmermann, A. (2006): “Forecast combinations”, Handbook of Economic Forecasting 1, 135–196.
Google Scholar -
Tong, H. (1990): Non-linear time series: a dynamical system approach, Oxford University Press.
Google Scholar -
Zhang, Y./Yang, Y. (2015): “Cross-validation for selecting a model selection procedure”, Journal of Econometrics 187(1), 95–112.
Google Scholar -
Arlot, S./Celisse, A. et al. (2010): “A survey of cross-validation procedures for model selection”, Statistics Surveys 4, 40–79.
Google Scholar -
Bates, J. M./Granger, C. W. (1969): “The combination of forecasts”, Journal of the Operational Research Society 20(4), 451–468.
Google Scholar -
Bergmeir, C./Benítez, J. M. (2012): “On the use of cross-validation for time series predictor evaluation”, Information Sciences 191, 192–213.
Google Scholar -
Bergmeir, C./Costantini, M./Benítez, J. M. (2014): “On the usefulness of cross-validation for directional forecast evaluation”, Computational Statistics & Data Analysis 76, 132–143.
Google Scholar -
Bergmeir, C./Hyndman, R. J./Koo, B. et al. (2015): “A note on the validity of cross-validation for evaluating time series prediction”, Monash University Department of Econometrics and Business Statistics Working Paper 10, 15.
Google Scholar -
Chan, F./Pauwels, L. L. (2018): “Some theoretical results on forecast combinations”, International Journal of Forecasting 34(1), 64–74.
Google Scholar -
Cryer, J. D./Kellet, N. (1991): Time Series Analysis, Springer.
Google Scholar -
Fornaro, P./Luomaranta, H. (2020): “Nowcasting Finnish real economic activity: a machine learning approach”, Empirical Economics 58(1), 55–71.
Google Scholar -
Garcia, M. G./Medeiros, M. C./Vasconcelos, G. F. (2017): “Real-time inflation forecasting with high-dimensional models: The case of Brazil”, International Journal of Forecasting 33(3), 679–693.
Google Scholar -
Hamilton, J. D. (1994): Time Series Analysis, Princeton University Press.
Google Scholar -
Hansen, P. R./Lunde, A./Nason, J. M. (2011): “The model confidence set”, Econometrica 79(2), 453–497.
Google Scholar -
Harvey, D./Leybourne, S./Newbold, P. (1997): “Testing the equality of prediction mean squared errors”, International Journal of Forecasting 13(2), 281–291.
Google Scholar -
Hsiao, C./Wan, S. K. (2014): “Is there an optimal forecast combination?”, Journal of Econometrics 178, 294–309.
Google Scholar -
Hyndman, R./Khandakar, Y. (2008): “Automatic Time Series Forecasting: The Forecast Package for R”, Journal of Statistical Software, Articles 27(3), 1–22. doi:10.18637/jss.v027.i03, https://www.jstatsoft.org/v027/i03.
Google Scholar -
James, G./Witten, D./Hastie, T./Tibshirani, R. (2013): An Introduction to Statistical Learning, vol. 112, Springer.
Google Scholar -
Markatou, M./Tian, H./Biswas, S./Hripcsak, G. (2005): “Analysis of variance of cross-validation estimators of the generalization error”, Journal of Machine Learning Research 6(Jul), 1127–1168.
Google Scholar -
McKnight, S./Mihailov, A./Rumler, F. (2019): “Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend”, Economic Modelling.
Google Scholar -
Montero-Manso, P./Athanasopoulos, G./Hyndman, R. J./Talagala, T. S. (2020): “FFORMA: Feature-based forecast model averaging”, International Journal of Forecasting 36(1), 86–92.
Google Scholar -
Murphy, K. P. (2012): Machine learning: a probabilistic perspective, MIT press.
Google Scholar -
Panagiotelis, A./Athanasopoulos, G./Hyndman, R. J./Jiang, B./Vahid, F. (2019): “Macroeconomic forecasting for Australia using a large number of predictors”, International Journal of Forecasting 35(2), 616–633.
Google Scholar -
Pawlikowski, M./Chorowska, A. (2020): “Weighted ensemble of statistical models”, International Journal of Forecasting 36(1), 93–97.
Google Scholar -
Racine, J. (2000): “Consistent cross-validatory model-selection for dependent data: hv-block cross-validation”, Journal of Econometrics 99(1), 39–61.
Google Scholar -
Salinas, D./Flunkert, V./Gasthaus, J./Januschowski, T. (2019): “DeepAR: Probabilistic forecasting with autoregressive recurrent networks”, International Journal of Forecasting 36(3), 1181–1191.
Google Scholar -
Siliverstovs, B. (2020): “Assessing nowcast accuracy of US GDP growth in real time: the role of booms and busts”, Empirical Economics 58(1), 7–27.
Google Scholar -
Smeekes, S./Wijler, E. (2018): “Macroeconomic forecasting using penalized regression methods”, International Journal of Forecasting 34(3), 408–430.
Google Scholar -
Spiliotis, E./Assimakopoulos, V./Makridakis, S. (2020): “Generalizing the Theta method for automatic forecasting”, European Journal of Operational Research.
Google Scholar -
Timmermann, A. (2006): “Forecast combinations”, Handbook of Economic Forecasting 1, 135–196.
Google Scholar -
Tong, H. (1990): Non-linear time series: a dynamical system approach, Oxford University Press.
Google Scholar -
Zhang, Y./Yang, Y. (2015): “Cross-validation for selecting a model selection procedure”, Journal of Econometrics 187(1), 95–112.
Google Scholar -
Arlot, S./Celisse, A. et al. (2010): “A survey of cross-validation procedures for model selection”, Statistics Surveys 4, 40–79.
Google Scholar -
Bates, J. M./Granger, C. W. (1969): “The combination of forecasts”, Journal of the Operational Research Society 20(4), 451–468.
Google Scholar -
Bergmeir, C./Benítez, J. M. (2012): “On the use of cross-validation for time series predictor evaluation”, Information Sciences 191, 192–213.
Google Scholar -
Bergmeir, C./Costantini, M./Benítez, J. M. (2014): “On the usefulness of cross-validation for directional forecast evaluation”, Computational Statistics & Data Analysis 76, 132–143.
Google Scholar -
Bergmeir, C./Hyndman, R. J./Koo, B. et al. (2015): “A note on the validity of cross-validation for evaluating time series prediction”, Monash University Department of Econometrics and Business Statistics Working Paper 10, 15.
Google Scholar -
Chan, F./Pauwels, L. L. (2018): “Some theoretical results on forecast combinations”, International Journal of Forecasting 34(1), 64–74.
Google Scholar -
Cryer, J. D./Kellet, N. (1991): Time Series Analysis, Springer.
Google Scholar -
Fornaro, P./Luomaranta, H. (2020): “Nowcasting Finnish real economic activity: a machine learning approach”, Empirical Economics 58(1), 55–71.
Google Scholar -
Garcia, M. G./Medeiros, M. C./Vasconcelos, G. F. (2017): “Real-time inflation forecasting with high-dimensional models: The case of Brazil”, International Journal of Forecasting 33(3), 679–693.
Google Scholar -
Hamilton, J. D. (1994): Time Series Analysis, Princeton University Press.
Google Scholar -
Hansen, P. R./Lunde, A./Nason, J. M. (2011): “The model confidence set”, Econometrica 79(2), 453–497.
Google Scholar -
Harvey, D./Leybourne, S./Newbold, P. (1997): “Testing the equality of prediction mean squared errors”, International Journal of Forecasting 13(2), 281–291.
Google Scholar -
Hsiao, C./Wan, S. K. (2014): “Is there an optimal forecast combination?”, Journal of Econometrics 178, 294–309.
Google Scholar -
Hyndman, R./Khandakar, Y. (2008): “Automatic Time Series Forecasting: The Forecast Package for R”, Journal of Statistical Software, Articles 27(3), 1–22. doi:10.18637/jss.v027.i03, https://www.jstatsoft.org/v027/i03.
Google Scholar -
James, G./Witten, D./Hastie, T./Tibshirani, R. (2013): An Introduction to Statistical Learning, vol. 112, Springer.
Google Scholar -
Markatou, M./Tian, H./Biswas, S./Hripcsak, G. (2005): “Analysis of variance of cross-validation estimators of the generalization error”, Journal of Machine Learning Research 6(Jul), 1127–1168.
Google Scholar -
McKnight, S./Mihailov, A./Rumler, F. (2019): “Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend”, Economic Modelling.
Google Scholar -
Montero-Manso, P./Athanasopoulos, G./Hyndman, R. J./Talagala, T. S. (2020): “FFORMA: Feature-based forecast model averaging”, International Journal of Forecasting 36(1), 86–92.
Google Scholar -
Murphy, K. P. (2012): Machine learning: a probabilistic perspective, MIT press.
Google Scholar -
Panagiotelis, A./Athanasopoulos, G./Hyndman, R. J./Jiang, B./Vahid, F. (2019): “Macroeconomic forecasting for Australia using a large number of predictors”, International Journal of Forecasting 35(2), 616–633.
Google Scholar -
Pawlikowski, M./Chorowska, A. (2020): “Weighted ensemble of statistical models”, International Journal of Forecasting 36(1), 93–97.
Google Scholar -
Racine, J. (2000): “Consistent cross-validatory model-selection for dependent data: hv-block cross-validation”, Journal of Econometrics 99(1), 39–61.
Google Scholar -
Salinas, D./Flunkert, V./Gasthaus, J./Januschowski, T. (2019): “DeepAR: Probabilistic forecasting with autoregressive recurrent networks”, International Journal of Forecasting 36(3), 1181–1191.
Google Scholar -
Siliverstovs, B. (2020): “Assessing nowcast accuracy of US GDP growth in real time: the role of booms and busts”, Empirical Economics 58(1), 7–27.
Google Scholar -
Smeekes, S./Wijler, E. (2018): “Macroeconomic forecasting using penalized regression methods”, International Journal of Forecasting 34(3), 408–430.
Google Scholar -
Spiliotis, E./Assimakopoulos, V./Makridakis, S. (2020): “Generalizing the Theta method for automatic forecasting”, European Journal of Operational Research.
Google Scholar -
Timmermann, A. (2006): “Forecast combinations”, Handbook of Economic Forecasting 1, 135–196.
Google Scholar -
Tong, H. (1990): Non-linear time series: a dynamical system approach, Oxford University Press.
Google Scholar -
Zhang, Y./Yang, Y. (2015): “Cross-validation for selecting a model selection procedure”, Journal of Econometrics 187(1), 95–112.
Google Scholar
Abstract
Our work aims to evaluate two strategies to forecast industrial output growth, one of the important macroeconomic indicators for a country. Automatic algorithms that require few or no human interventions and are neutral generate good forecast performance and can be helpful for policymakers. We propose an automatic algorithm that is based on cross-validating different models and finding an optimal combination of them as soon as a new information is available. We evaluate two strategies. The first strategy aims to improve the Granger and Bates method by using cross-validation to better estimate the weights that are used in forecast combinations. The second strategy selects the best model to be used for forecasting based on the Cv technique (CvML). We apply our strategies to the industrial output growth rate data of six countries: Brazil, Germany, the United States, France, Japan, and the United Kingdom. Both cited methods were applied on “pseudo” streaming data, with observations feeding the model one by one, being re-estimated after each step, with an automatic selection/combination of models. Our results show that CvML outperforms all other benchmark models in most cases, especially in the long run. Even when CvML is not the best performing model, it has the same statistical performance as the best one.
Table of Contents
Section Title | Page | Action | Price |
---|---|---|---|
Jeronymo Marcondes Pinto / Emerson Fernandes Marçal: Industrial Output Growth Forecast: A Machine Learning Approach Based on Cross-Validation | 337 | ||
Abstract | 337 | ||
1. Introduction | 337 | ||
2. Material and Methods | 339 | ||
2.1 Cross-Validation Parameters | 340 | ||
2.2 Modified Granger and Bates Strategy | 341 | ||
2.3 Cross-Validation Machine-Learning Strategy | 342 | ||
2.4 Benchmarks | 342 | ||
3. Results | 343 | ||
3.1 Data | 343 | ||
3.2 Findings | 343 | ||
4. Limitations and Possible Extensions | 345 | ||
5. Concluding Remarks | 346 | ||
References | 347 | ||
Appendix | 349 |