Menu Expand

Sunday gleich Funday? Die Analyse und Prognose von Zeiteffekten im Online-Kundenverhalten im Versicherungsbereich mittels Machine Learning

Cite JOURNAL ARTICLE

Style

Wolf, L., Galehr-Fritsch, E., Steul-Fischer, M. Sunday gleich Funday? Die Analyse und Prognose von Zeiteffekten im Online-Kundenverhalten im Versicherungsbereich mittels Machine Learning. Zeitschrift für die gesamte Versicherungswissenschaft, 113(1), 105-125. https://doi.org/10.3790/zverswiss.2024.1430601
Wolf, Lukas; Galehr-Fritsch, Elisabeth and Steul-Fischer, Martina "Sunday gleich Funday? Die Analyse und Prognose von Zeiteffekten im Online-Kundenverhalten im Versicherungsbereich mittels Machine Learning" Zeitschrift für die gesamte Versicherungswissenschaft 113.1, 2024, 105-125. https://doi.org/10.3790/zverswiss.2024.1430601
Wolf, Lukas/Galehr-Fritsch, Elisabeth/Steul-Fischer, Martina (2024): Sunday gleich Funday? Die Analyse und Prognose von Zeiteffekten im Online-Kundenverhalten im Versicherungsbereich mittels Machine Learning, in: Zeitschrift für die gesamte Versicherungswissenschaft, vol. 113, iss. 1, 105-125, [online] https://doi.org/10.3790/zverswiss.2024.1430601

Format

Sunday gleich Funday? Die Analyse und Prognose von Zeiteffekten im Online-Kundenverhalten im Versicherungsbereich mittels Machine Learning

Wolf, Lukas | Galehr-Fritsch, Elisabeth | Steul-Fischer, Martina

Zeitschrift für die gesamte Versicherungswissenschaft, Vol. 113 (2024), Iss. 1 : pp. 105–125

Additional Information

Article Details

Author Details

Lukas Wolf, M.Sc. (Korrespondierender Autor), Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Betriebswirtschaftslehre, insb. Versicherungsmarketing, Lange Gasse 20, 90403 Nürnberg.

Elisabeth Galehr-Fritsch, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Lange Gasse 20, 90403 Nürnberg, Deutschland

Martina Steul-Fischer, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Lange Gasse 20, 90403 Nürnberg, Deutschland

References

  1. Adesso SE (2022): Adesso Digital Commerce Studie 2023. https://www.adesso.de/adesso-de/downloads/adesso-digitalcommerce-studie-finance.pdf.  Google Scholar
  2. Ahlbom, C.-P./Roggeveen, A. L./Grewal, D./Nordfält, J. (2023): Understanding How Music Influences Shopping on Weekdays and Weekends. In: J Mark Res, 60(5), 987–1007. DOI: 10.1177/00222437221150930.  Google Scholar
  3. Albrecht, T./Rausch, T. M./Derra, N. D. (2021): Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting. In: J Bus R, 123, 267–278. DOI: 10.1016/j.jbusres.2020.09.033.  Google Scholar
  4. Barrow, D. K. (2016): Forecasting intraday call arrivals using the seasonal moving average method. In: J Bus R, 69(12), 6088–6096. DOI: 10.1016/j.jbusres.2016.06.016.  Google Scholar
  5. Barwitz, N. (2020): The relevance of interaction choice: Customer preferences and willingness to pay. In: J Retail Consum Serv, 53, 101953. DOI: 10.1016/j.jretconser.2019.101953.  Google Scholar
  6. Box, G. E. P. (2016): Time series analysis: Forecasting and control. Fifth edition. Hoboken, New Jersey. John Wiley & Sons, Inc (Wiley series in probability and statistics).  Google Scholar
  7. Box, G. E. P./Jenkins, G. M./Reinsel, G. C. (2008): Time series analysis: Forecasting and control. (fourth edition). In: J Wiley & Sons (2008). https://learning.oreilly.com/library/view/-/9780470272848/?ar.  Google Scholar
  8. Bussière, D. (2011): The Day of the Week Effect in Consumer Behavior: Analyzing Utilitarian and Hedonistic Consumer Modes. In: J Promot Manag, 17(4), 418–425. DOI: 10.1080/10496491.2011.620477.  Google Scholar
  9. Canova, L./Nicolini, M. (2019): Online price search across desktop and mobile devices: Evidence on cyberslacking and weather effects. In: J Retail Consum Serv, 47, 32–39. DOI: 10.1016/j.jretconser.2018.10.010.  Google Scholar
  10. de Haan, E./Kannan, P. K./Verhoef, P. C./Wiesel, T. (2018): Device Switching in Online Purchasing: Examining the Strategic Contingencies. In: J Mark, 82(5), 1–19. DOI: 10.1509/jm.17.0113.  Google Scholar
  11. Holmlund, M./van Vaerenbergh, Y./Ciuchita, R./Ravald, A./Sarantopoulos, P./Ordenes, F. V./Zaki, M. (2020): Customer experience management in the age of big data analytics: A strategic framework. In: J Bus R, 116, 356–365. DOI: 10.1016/j.jbusres.2020.01.022.  Google Scholar
  12. Hyndman, R. J./Athanasopoulos, G. (2018): Forecasting: Principles and practice. 2nd print ed. Lexington, Ky. OTexts (2018).  Google Scholar
  13. James, G./Witten, D./Hastie, T./Tibshirani, R. (2021): An introduction to statistical learning: With applications in R. Second edition. New York, NY, U.S.A., Ann Arbor, Michigan. Springer; ProQuest (Springer texts in statistics). https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2985424.  Google Scholar
  14. Klopfer, L.-M./Steul-Fischer, M./Zitzmann, A. (2022): Customer Experience Management – Eine qualitative Studie zur Umsetzung in der Versicherungsbranche. In: ZVersWiss, 111(3), 245–276. DOI: 10.1007/s12297-022-00531-6.  Google Scholar
  15. Lazzeri, F. (2021): Machine learning for time series forecasting with Python. Indianapolis, Indiana. Wiley. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119682394.  Google Scholar
  16. Lemon, K. N./Verhoef, P. C. (2016): Understanding Customer Experience Throughout the Customer Journey. In: J Mark, 80(6), 69–96. DOI: 10.1509/jm.15.0420.  Google Scholar
  17. Namin, A./Dehdashti, Y. (2019): A „hidden“ side of consumer grocery shopping choice. In: J Retail Consum Serv, 48, 16–27. DOI: 10.1016/j.jretconser.2019.01.009.  Google Scholar
  18. Park, S./Lee, D. (2017): An empirical study on consumer online shopping channel choice behavior in omni-channel environment. In: Telemat Informat, 34(8), 1398–1407. DOI: 10.1016/j.tele.2017.06.003.  Google Scholar
  19. Pedregosa, F./Varoquaux, G./Gramfort, A./Michel, V./Thirion, B./Grisel, O. et al. (2011): Scikit-learn: Machine learning in Python. https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https://githubhelp.com.  Google Scholar
  20. Rausch, T. M./Derra, N. D./Wolf, L. (2022): Predicting online shopping cart abandonment with machine learning approaches. In: International Journal of Market Research, 64(1), 89–112. DOI: 10.1177/1470785320972526.  Google Scholar
  21. Stone, A.A./Schneider, S./Harter, J. K. (2012): Day-of-week mood patterns in the United States: On the existence of ‚Blue Monday‘, ‚Thank God it’s Friday‘ and weekend effects. In: The Journal of Positive Psychology, 7(4), 306–314. DOI: 10.1080/17439760.2012.691980.  Google Scholar
  22. Taylor, J. W. (2008): A Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at a Call Center. In: Manage Sci, 54(2), 253–265. DOI: 10.1287/mnsc.1070.0786.  Google Scholar
  23. Wolf, L. (2023): Device‐mediated customer behavior on the Internet – A systematic literature review. In: Int J Consumer Studies, 47(6), 2270–2304. DOI: 10.1111/ijcs.12925.  Google Scholar
  24. Zhang, L./Shao, Z./Zhang, J./Li, X. (2022): The situational nature of impulse buying on mobile platforms: A cross-temporal investigation. Electronic Commerce Research and Applications, 56, 101204. DOI: 10.1016/j.elerap.2022.101204.  Google Scholar

Abstract

Customers act differently depending on the time of day, day of the week, or season of the year. However, the influence of such temporal factors on customer behavior has hardly been researched so far. This study investigates the extent to which time effects exist in the online behavior of insurance customers (click behavior, insurance purchases, device choice) and whether time series models can predict specific customer behavior based on these time effects. The study uses a comprehensive clickstream dataset of a German insurer, which contains detailed mouse clicks of all website visitors over a period of two years. It shows that significantly fewer customers visit the website or purchase insurances on weekends and public holidays. The day-of-the-week effect is more pronounced when stationary devices are used compared to mobile devices. In addition, the model comparison shows that machine learning models in particular enable accurate predictions about online customer behavior in the insurance sector. A thorough understanding of online customer behavior, coupled with accurate predictions based on customer data and temporal factors, is a crucial element in the optimal planning of marketing strategies and enhancing the customer experience.