Menu Expand

Künstliche Intelligenz im Gesundheitswesen – Vertrauen als wirtschaftsethische Schlüsselressource

Cite JOURNAL ARTICLE

Style

Hedfeld, P. Künstliche Intelligenz im Gesundheitswesen – Vertrauen als wirtschaftsethische Schlüsselressource. Sozialer Fortschritt, 74(8–9), 511-519. https://doi.org/10.3790/sfo.2025.1466602
Hedfeld, Patrick "Künstliche Intelligenz im Gesundheitswesen – Vertrauen als wirtschaftsethische Schlüsselressource" Sozialer Fortschritt 74.8–9, 2025, 511-519. https://doi.org/10.3790/sfo.2025.1466602
Hedfeld, Patrick (2025): Künstliche Intelligenz im Gesundheitswesen – Vertrauen als wirtschaftsethische Schlüsselressource, in: Sozialer Fortschritt, vol. 74, iss. 8–9, 511-519, [online] https://doi.org/10.3790/sfo.2025.1466602

Format

Künstliche Intelligenz im Gesundheitswesen – Vertrauen als wirtschaftsethische Schlüsselressource

Hedfeld, Patrick

Sozialer Fortschritt, Vol. 74(2025), Iss. 8–9 : pp. 511–519 | First published online: September 11, 2025

Additional Information

Article Details

Pricing

Author Details

Hedfeld, Dr. Patrick, Goethe Universität Frankfurt am Main, Center for Business Ethics, Theodor-W.-Adorno-Platz 4, 60629 Frankfurt am Main sowie FOM Franklin­straße 52,60486 Frankfurt am Main.

References

  1. Alowais, F./Shuroug, E./Koulouris, S./Tiernan, E. (2023): Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Medical Education 23.  Google Scholar
  2. Ardila, D./Kiraly, A. P./Bharadwaj, S./Choi, B./Reicher, J. J./Peng, L., … & Shetty, S. (2019): End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature medicine, 25(6): p. 954–961.  Google Scholar
  3. Bærøe, K./Miyata-Sturm, A./Henden, E. (2020): How to Achieve Trustworthy Artificial Intelligence for Health. Bulletin of the World Health Organization 98(5): p. 377–382.  Google Scholar
  4. Boels, A. M./Vos, R. C./Dijkhorst-Oei, L. T./Rutten, G. E. (2019): Effectiveness of diabetes self-management education and support via a smartphone application in insulin-treated patients with type 2 diabetes: results of a randomized controlled trial (TRIGGER study). BMJ open diabetes research and care, 7(1): p. e000981.  Google Scholar
  5. Boston Consulting Group – BCG (2021): How Digital and AI Will Reshape Health Care in 2025. BCG Report. https://www.bcg.com/publications/2025/digital-ai-solutions-reshape-health-care-2025 [07.07.2025].  Google Scholar
  6. Brodersen, J. B./Caggiano, I. A./Kringen, P./Madai, V. I./Osika, W., Sartor, G., … & Zicari, R. V. (2025): Getting Ready for the EU AI Act in Healthcare. A Call for Sustainable AI Development and Deployment. arXiv preprint arXiv:2505.07875.  Google Scholar
  7. Campanella, G./Hanna, M. G./Geneslaw, L./Miraflor, A./Werneck Krauss Silva, V./Busam, K. J., … & Fuchs, T. J. (2019): Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature medicine, 25(8): p. 1301–1309.  Google Scholar
  8. Char, D. S./Shah, N. H./Magnus, D. (2018): Implementing machine learning in health care – addressing ethical challenges. New England Journal of Medicine, 378(11): p. 981–983.  Google Scholar
  9. Doshi-Velez, F./Kim, B. (2017): Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608.  Google Scholar
  10. Ducret, M./Wahal, E./Gruson, D./Amrani, S./Richert, R./Mouncif-Moungache, M./Schwendicke, F. (2024): Trustworthy artificial intelligence in dentistry: learnings from the EU AI Act. Journal of Dental Research, 103(11): p. 1051–1056.  Google Scholar
  11. Esteva, A./Robicquet, A./Ramsundar, B./Kuleshov, V./DePristo, M./Chou, K., … & Dean, J. (2019): A guide to deep learning in healthcare. Nature medicine, 25(1): p. 24–29.  Google Scholar
  12. European Commission (2019): Ethics Guidelines for Trustworthy Artificial Intelligence. High-Level Expert Group on AI, EU-Kommission, Februar 2019.  Google Scholar
  13. European Commission (2021): Special Eurobarometer 518 – Attitudes towards the impact of digitisation and automation on daily life,Brüssel, https://europa.eu/eurobarometer/surveys/detail/2160 [07.07.2025].  Google Scholar
  14. Gerke, S./Minssen, T./Cohen, G. (2020): Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial intelligence in healthcare (pp. 295–336), Academic Press.  Google Scholar
  15. Ghassemi, M./Naumann, T./Schulam, P./Beam, A. L./Chen, I. Y./Ranganath, R. (2020): A review of challenges and opportunities in machine learning for health. AMIA Summits on Translational Science Proceedings, 2020, 191.  Google Scholar
  16. Homann, K. (1993): Wirtschaftsethik, Wo bleibt die Philosophie? Lexikon für Wirtschaftsethik, Freiburg, Herder, S. 7ff.  Google Scholar
  17. Homann, K. (2014): Sollen und Können: Grenzen und Bedingungen der Individualmoral, Vienna, Ibera Verlag – European University Press Verlagsgesellschaft.  Google Scholar
  18. Kermany, D. S./Goldbaum, M./Cai, W./Valentim, C. C./Liang, H./Baxter, S. L., … & Zhang, K. (2018): Identifying medical diagnoses and treatable diseases by image-based deep learning. cell, 172(5): p. 1122–1131.  Google Scholar
  19. Krakowski, I./Kim, J./Cai, Z. R./Daneshjou, R./Lapins, J./Eriksson, H., … & Linos, E. (2024): Human-AI interaction in skin cancer diagnosis: a systematic review and meta-analysis. NPJ Digital Medicine, 7(1): p. 78.  Google Scholar
  20. Krittanawong, C./Virk, H. U. H./Bangalore, S./Wang, Z./Johnson, K. W./Pinotti, R., … & Tang, W. W. (2020): Machine learning prediction in cardiovascular diseases: a meta-analysis. Scientific reports, 10(1): 16057.  Google Scholar
  21. Minnameier, G./Ziegler, B. (2016): Ethik und Beruf. Interdisziplinäre Zugänge.  Google Scholar
  22. Moy, S./Irannejad, M./Manning, S. J./Farahani, M./Ahmed, Y./Gao, E./Prabhune, R./Lorenz, S./Mirza, R./Klinger, C. (2024): Patient Perspectives on the Use of Artificial Intelligence in Health Care: A Scoping Review, J Patient Cent Res Rev., 11(1): 51–62, doi: https://doi.org/10.17294/2330-0698.2029. PMID: 38596349; PMCID: PMC11000703.  Google Scholar
  23. Mukerji, N. (2016): Karl Homann, Sollen und Können-Grenzen und Bedingungen der Individualmoral.  Google Scholar
  24. Niu, S./Hong, W./Ma, Y. (2024): How Expectations and Trust in Telemedicine Contribute to Older Adults’ Sense of Control: An Empirical Study. Healthcare 12(17): p. 1685.  Google Scholar
  25. Obermeyer, Z./Powers, B./Vogeli, C./Mullainathan, S. (2019): Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations. Science 366(6464): p. 447–453.  Google Scholar
  26. OECD (2021): Health at a Glance 2021: OECD Indicators, Paris, https://www.oecd.org/en/publications/health-at-a-glance-2021_ae3016b9-en.html [Abrufdatum ergänzen].  Google Scholar
  27. PwC (2022): AI can ease the pain points in healthcare for patients, physicians and payers. PwC Health Report, https://www.pwc.com/us/en/industries/health-industries/library/ai-in-healthcare.html [07.07.2025] und https://www.forbes.com/councils/forbestechcouncil/2022/12/12/reimagining-healthcare-with-ai-three-key-areas-for-transformation/ [08.07.2025].  Google Scholar
  28. Sendak, M. P./D’Arcy, J./Kashyap, S./Gao, M./Nichols, M./Corey, K., … & Balu, S. (2020): A path for translation of machine learning products into healthcare delivery. EMJ Innov, 10, 19-00172.  Google Scholar
  29. Steerling, E./Siira, E./Nilsen, P./Svedberg, P./Nygren, J. (2023): Implementing AI in Healthcare – the Relevance of Trust: A Scoping Review. Frontiers in Health Services 3:1211150.  Google Scholar
  30. Topol, E. (2019): Deep medicine: how artificial intelligence can make healthcare human again, Hachette UK.  Google Scholar
  31. Tschandl, P./Rinner, C./Apalla, Z./Argenziano, G./Codella, N./Halpern, A., … & Kittler, H. (2020): Human–computer collaboration for skin cancer recognition. Nature medicine, 26(8): p. 1229-1234.  Google Scholar
  32. WHO (2021): Ethics and Governance of Artificial Intelligence for Health. Geneva: World Health Organization, https://www.who.int/publications/i/item/9789240029200 [07.07. 2025].  Google Scholar
  33. Zhou, L. Q./Wang, J. Y./Yu, S. Y./Wu, G. G./Wei, Q./Deng, Y. B., … & Dietrich, C. F. (2019): Artificial intelligence in medical imaging of the liver. World journal of gastroenterology, 25(6): p. 672.  Google Scholar

Abstract

Artificial intelligence in healthcare - trust as a key resource of business ethics

Abstract: Artificial Intelligence in Healthcare: Trust as a Key Economic-Ethical Resource

Artificial Intelligence (AI) is increasingly being used in healthcare, promising advances in diagnostics, therapy, and care management. At the same time, it raises fundamental ethical questions—particularly regarding the trust of patients, medical professionals, and society. This article analyzes the potentials and risks of AI from a business ethics perspective and examines how trust can be fostered. Based on this analysis, policy recommendations are proposed that emphasize transparency, participation, and fairness.

Table of Contents

Section Title Page Action Price
Position 511
Patrick Hedfeld: Künstliche Intelligenz im Gesundheitswesen – Vertrauen als wirtschaftsethische Schlüsselressource 511
Zusammenfassung 511
Abstract: Artificial Intelligence in Healthcare: Trust as a Key Economic-Ethical Resource 511
1. Einleitung 512
2. Künstliche Intelligenz im Gesundheitssystem 512
2.1 Entwicklungen und Anwendungsfelder 512
2.2 Potenziale und Vorteile 513
2.3 Risiken und Herausforderungen 514
3. Vertrauen als zentrale Herausforderung 514
4. Wirtschaftsethische Analyse 515
4.1 Ethische Prinzipien 515
4.2 Wirtschaftliche Abwägungen 516
5. Konkrete Reformvorschläge 517
Literatur 517