Künstliche Intelligenz im Gesundheitswesen – Vertrauen als wirtschaftsethische Schlüsselressource
JOURNAL ARTICLE
Cite JOURNAL ARTICLE
Style
Format
Künstliche Intelligenz im Gesundheitswesen – Vertrauen als wirtschaftsethische Schlüsselressource
Sozialer Fortschritt, Vol. 74(2025), Iss. 8–9 : pp. 511–519 | First published online: September 11, 2025
Additional Information
Article Details
Pricing
Author Details
Hedfeld, Dr. Patrick, Goethe Universität Frankfurt am Main, Center for Business Ethics, Theodor-W.-Adorno-Platz 4, 60629 Frankfurt am Main sowie FOM Franklinstraße 52,60486 Frankfurt am Main.
References
-
Alowais, F./Shuroug, E./Koulouris, S./Tiernan, E. (2023): Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Medical Education 23.
Google Scholar -
Ardila, D./Kiraly, A. P./Bharadwaj, S./Choi, B./Reicher, J. J./Peng, L., … & Shetty, S. (2019): End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature medicine, 25(6): p. 954–961.
Google Scholar -
Bærøe, K./Miyata-Sturm, A./Henden, E. (2020): How to Achieve Trustworthy Artificial Intelligence for Health. Bulletin of the World Health Organization 98(5): p. 377–382.
Google Scholar -
Boels, A. M./Vos, R. C./Dijkhorst-Oei, L. T./Rutten, G. E. (2019): Effectiveness of diabetes self-management education and support via a smartphone application in insulin-treated patients with type 2 diabetes: results of a randomized controlled trial (TRIGGER study). BMJ open diabetes research and care, 7(1): p. e000981.
Google Scholar -
Boston Consulting Group – BCG (2021): How Digital and AI Will Reshape Health Care in 2025. BCG Report. https://www.bcg.com/publications/2025/digital-ai-solutions-reshape-health-care-2025 [07.07.2025].
Google Scholar -
Brodersen, J. B./Caggiano, I. A./Kringen, P./Madai, V. I./Osika, W., Sartor, G., … & Zicari, R. V. (2025): Getting Ready for the EU AI Act in Healthcare. A Call for Sustainable AI Development and Deployment. arXiv preprint arXiv:2505.07875.
Google Scholar -
Campanella, G./Hanna, M. G./Geneslaw, L./Miraflor, A./Werneck Krauss Silva, V./Busam, K. J., … & Fuchs, T. J. (2019): Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature medicine, 25(8): p. 1301–1309.
Google Scholar -
Char, D. S./Shah, N. H./Magnus, D. (2018): Implementing machine learning in health care – addressing ethical challenges. New England Journal of Medicine, 378(11): p. 981–983.
Google Scholar -
Doshi-Velez, F./Kim, B. (2017): Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608.
Google Scholar -
Ducret, M./Wahal, E./Gruson, D./Amrani, S./Richert, R./Mouncif-Moungache, M./Schwendicke, F. (2024): Trustworthy artificial intelligence in dentistry: learnings from the EU AI Act. Journal of Dental Research, 103(11): p. 1051–1056.
Google Scholar -
Esteva, A./Robicquet, A./Ramsundar, B./Kuleshov, V./DePristo, M./Chou, K., … & Dean, J. (2019): A guide to deep learning in healthcare. Nature medicine, 25(1): p. 24–29.
Google Scholar -
European Commission (2019): Ethics Guidelines for Trustworthy Artificial Intelligence. High-Level Expert Group on AI, EU-Kommission, Februar 2019.
Google Scholar -
European Commission (2021): Special Eurobarometer 518 – Attitudes towards the impact of digitisation and automation on daily life,Brüssel, https://europa.eu/eurobarometer/surveys/detail/2160 [07.07.2025].
Google Scholar -
Gerke, S./Minssen, T./Cohen, G. (2020): Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial intelligence in healthcare (pp. 295–336), Academic Press.
Google Scholar -
Ghassemi, M./Naumann, T./Schulam, P./Beam, A. L./Chen, I. Y./Ranganath, R. (2020): A review of challenges and opportunities in machine learning for health. AMIA Summits on Translational Science Proceedings, 2020, 191.
Google Scholar -
Homann, K. (1993): Wirtschaftsethik, Wo bleibt die Philosophie? Lexikon für Wirtschaftsethik, Freiburg, Herder, S. 7ff.
Google Scholar -
Homann, K. (2014): Sollen und Können: Grenzen und Bedingungen der Individualmoral, Vienna, Ibera Verlag – European University Press Verlagsgesellschaft.
Google Scholar -
Kermany, D. S./Goldbaum, M./Cai, W./Valentim, C. C./Liang, H./Baxter, S. L., … & Zhang, K. (2018): Identifying medical diagnoses and treatable diseases by image-based deep learning. cell, 172(5): p. 1122–1131.
Google Scholar -
Krakowski, I./Kim, J./Cai, Z. R./Daneshjou, R./Lapins, J./Eriksson, H., … & Linos, E. (2024): Human-AI interaction in skin cancer diagnosis: a systematic review and meta-analysis. NPJ Digital Medicine, 7(1): p. 78.
Google Scholar -
Krittanawong, C./Virk, H. U. H./Bangalore, S./Wang, Z./Johnson, K. W./Pinotti, R., … & Tang, W. W. (2020): Machine learning prediction in cardiovascular diseases: a meta-analysis. Scientific reports, 10(1): 16057.
Google Scholar -
Minnameier, G./Ziegler, B. (2016): Ethik und Beruf. Interdisziplinäre Zugänge.
Google Scholar -
Moy, S./Irannejad, M./Manning, S. J./Farahani, M./Ahmed, Y./Gao, E./Prabhune, R./Lorenz, S./Mirza, R./Klinger, C. (2024): Patient Perspectives on the Use of Artificial Intelligence in Health Care: A Scoping Review, J Patient Cent Res Rev., 11(1): 51–62, doi: https://doi.org/10.17294/2330-0698.2029. PMID: 38596349; PMCID: PMC11000703.
Google Scholar -
Mukerji, N. (2016): Karl Homann, Sollen und Können-Grenzen und Bedingungen der Individualmoral.
Google Scholar -
Niu, S./Hong, W./Ma, Y. (2024): How Expectations and Trust in Telemedicine Contribute to Older Adults’ Sense of Control: An Empirical Study. Healthcare 12(17): p. 1685.
Google Scholar -
Obermeyer, Z./Powers, B./Vogeli, C./Mullainathan, S. (2019): Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations. Science 366(6464): p. 447–453.
Google Scholar -
OECD (2021): Health at a Glance 2021: OECD Indicators, Paris, https://www.oecd.org/en/publications/health-at-a-glance-2021_ae3016b9-en.html [Abrufdatum ergänzen].
Google Scholar -
PwC (2022): AI can ease the pain points in healthcare for patients, physicians and payers. PwC Health Report, https://www.pwc.com/us/en/industries/health-industries/library/ai-in-healthcare.html [07.07.2025] und https://www.forbes.com/councils/forbestechcouncil/2022/12/12/reimagining-healthcare-with-ai-three-key-areas-for-transformation/ [08.07.2025].
Google Scholar -
Sendak, M. P./D’Arcy, J./Kashyap, S./Gao, M./Nichols, M./Corey, K., … & Balu, S. (2020): A path for translation of machine learning products into healthcare delivery. EMJ Innov, 10, 19-00172.
Google Scholar -
Steerling, E./Siira, E./Nilsen, P./Svedberg, P./Nygren, J. (2023): Implementing AI in Healthcare – the Relevance of Trust: A Scoping Review. Frontiers in Health Services 3:1211150.
Google Scholar -
Topol, E. (2019): Deep medicine: how artificial intelligence can make healthcare human again, Hachette UK.
Google Scholar -
Tschandl, P./Rinner, C./Apalla, Z./Argenziano, G./Codella, N./Halpern, A., … & Kittler, H. (2020): Human–computer collaboration for skin cancer recognition. Nature medicine, 26(8): p. 1229-1234.
Google Scholar -
WHO (2021): Ethics and Governance of Artificial Intelligence for Health. Geneva: World Health Organization, https://www.who.int/publications/i/item/9789240029200 [07.07. 2025].
Google Scholar -
Zhou, L. Q./Wang, J. Y./Yu, S. Y./Wu, G. G./Wei, Q./Deng, Y. B., … & Dietrich, C. F. (2019): Artificial intelligence in medical imaging of the liver. World journal of gastroenterology, 25(6): p. 672.
Google Scholar
Abstract
Artificial intelligence in healthcare - trust as a key resource of business ethics
Abstract: Artificial Intelligence in Healthcare: Trust as a Key Economic-Ethical Resource
Artificial Intelligence (AI) is increasingly being used in healthcare, promising advances in diagnostics, therapy, and care management. At the same time, it raises fundamental ethical questions—particularly regarding the trust of patients, medical professionals, and society. This article analyzes the potentials and risks of AI from a business ethics perspective and examines how trust can be fostered. Based on this analysis, policy recommendations are proposed that emphasize transparency, participation, and fairness.
Table of Contents
Section Title | Page | Action | Price |
---|---|---|---|
Position | 511 | ||
Patrick Hedfeld: Künstliche Intelligenz im Gesundheitswesen – Vertrauen als wirtschaftsethische Schlüsselressource | 511 | ||
Zusammenfassung | 511 | ||
Abstract: Artificial Intelligence in Healthcare: Trust as a Key Economic-Ethical Resource | 511 | ||
1. Einleitung | 512 | ||
2. Künstliche Intelligenz im Gesundheitssystem | 512 | ||
2.1 Entwicklungen und Anwendungsfelder | 512 | ||
2.2 Potenziale und Vorteile | 513 | ||
2.3 Risiken und Herausforderungen | 514 | ||
3. Vertrauen als zentrale Herausforderung | 514 | ||
4. Wirtschaftsethische Analyse | 515 | ||
4.1 Ethische Prinzipien | 515 | ||
4.2 Wirtschaftliche Abwägungen | 516 | ||
5. Konkrete Reformvorschläge | 517 | ||
Literatur | 517 |