Menu Expand

Google Econometrics and Unemployment Forecasting

Cite JOURNAL ARTICLE

Style

Askitas, N., Zimmermann, K. Google Econometrics and Unemployment Forecasting. Applied Economics Quarterly, 55(2), 107-120. https://doi.org/10.3790/aeq.55.2.107
Askitas, Nikolaos and Zimmermann, Klaus F "Google Econometrics and Unemployment Forecasting" Applied Economics Quarterly 55.2, , 107-120. https://doi.org/10.3790/aeq.55.2.107
Askitas, Nikolaos/Zimmermann, Klaus F: Google Econometrics and Unemployment Forecasting, in: Applied Economics Quarterly, vol. 55, iss. 2, 107-120, [online] https://doi.org/10.3790/aeq.55.2.107

Format

Google Econometrics and Unemployment Forecasting

Askitas, Nikolaos | Zimmermann, Klaus F

Applied Economics Quarterly, Vol. 55 (2009), Iss. 2 : pp. 107–120

293 Citations (CrossRef)

Additional Information

Article Details

Pricing

Author Details

1Nikolaos Askitas, Bonn University, IZA, 53072 Bonn, Germany.

2Klaus F. Zimmermann, Bonn University, IZA, 53072 Bonn, Germany, and DIW Berlin, Germany.

Cited By

  1. Google Searches and Suicide Rates in Spain, 2004-2013: Correlation Study

    Jimenez, Alberto | Santed-Germán, Miguel-Angel | Ramos, Victoria

    JMIR Public Health and Surveillance, Vol. 6 (2020), Iss. 2 P.e10919

    https://doi.org/10.2196/10919 [Citations: 15]
  2. In Search of a Job: Forecasting Employment Growth in the US Using Google Trends

    Schütte, Erik Christian Montes

    SSRN Electronic Journal , Vol. (2018), Iss.

    https://doi.org/10.2139/ssrn.3217850 [Citations: 0]
  3. A robust textual analysis of the dynamics of Hong Kong property market

    Wong, Ken | Kwong, Max | Luk, Paul | Cheng, Michael

    Pacific Economic Review, Vol. 28 (2023), Iss. 3 P.314

    https://doi.org/10.1111/1468-0106.12398 [Citations: 0]
  4. Understanding Risk Communication Effectiveness From Public Interest, Mobility, and COVID-19 Cases: A Case Study of COVID-19 in Nigeria

    Lawal, Olanrewaju

    Frontiers in Communication, Vol. 7 (2022), Iss.

    https://doi.org/10.3389/fcomm.2022.921648 [Citations: 3]
  5. Prediciendo la llegada de turistas a Colombia a partir de los criterios de Google Trends

    Correa, Alexander

    Lecturas de Economía, Vol. (2021), Iss. 95 P.105

    https://doi.org/10.17533/udea.le.n95a343462 [Citations: 1]
  6. A formal definition of Big Data based on its essential features

    De Mauro, Andrea | Greco, Marco | Grimaldi, Michele

    Library Review, Vol. 65 (2016), Iss. 3 P.122

    https://doi.org/10.1108/LR-06-2015-0061 [Citations: 620]
  7. Austerity plan announcements and the impact on the employees’ wellbeing

    Botezat, Alina

    Journal of Economic Psychology, Vol. 63 (2017), Iss. P.1

    https://doi.org/10.1016/j.joep.2017.09.002 [Citations: 3]
  8. Revisiting the use of web search data for stock market movements

    Zhong, Xu | Raghib, Michael

    Scientific Reports, Vol. 9 (2019), Iss. 1

    https://doi.org/10.1038/s41598-019-50131-1 [Citations: 7]
  9. The Study of Para-Social Interaction With E-Word-of-Mouth for Influencer Marketing by Complex Computing

    Yuan, Yu-Hsi | Yeh, Yi-Cheng | Wu, Chia-Huei | Liu, Cheng-Yong | Chen, Hsin-Hao | Chen, Chien-Wen

    Journal of Organizational and End User Computing, Vol. 34 (2021), Iss. 3 P.1

    https://doi.org/10.4018/JOEUC.287105 [Citations: 7]
  10. Frühwarnindikatoren und Krisenfrühaufklärung

    Strategische Wendepunkte und Krisenfrühwarnung

    Brokmann, Torben

    2012

    https://doi.org/10.1007/978-3-8349-6794-7_16 [Citations: 1]
  11. Do searches on Google help in deterring property crime? Evidence from Indian states

    Bhushan, Sunny | Jha, Saakshi

    Quality & Quantity, Vol. 58 (2024), Iss. 2 P.1255

    https://doi.org/10.1007/s11135-023-01694-9 [Citations: 0]
  12. Nowcasting with panels and alternative data: The OECD weekly tracker

    Woloszko, Nicolas

    International Journal of Forecasting, Vol. 40 (2024), Iss. 4 P.1302

    https://doi.org/10.1016/j.ijforecast.2023.11.005 [Citations: 0]
  13. A Tool to Nowcast Tourist Overnight Stays with Payment Data and Complementary Indicators

    Crispino, Marta | Mariani, Vincenzo

    SSRN Electronic Journal, Vol. (2023), Iss.

    https://doi.org/10.2139/ssrn.4464054 [Citations: 0]
  14. Using Google Search Data for State Politics Research: An Empirical Validity Test Using Roll-Off Data

    Reilly, Shauna | Richey, Sean | Taylor, J. Benjamin

    State Politics & Policy Quarterly, Vol. 12 (2012), Iss. 2 P.146

    https://doi.org/10.1177/1532440012438889 [Citations: 56]
  15. Online Buzz and Searches as Telecoms Brand Performance Indicators

    Bughin, Jacques R.

    SSRN Electronic Journal, Vol. (2011), Iss.

    https://doi.org/10.2139/ssrn.1904328 [Citations: 2]
  16. Searching Choices: Quantifying Decision‐Making Processes Using Search Engine Data

    Moat, Helen Susannah | Olivola, Christopher Y. | Chater, Nick | Preis, Tobias

    Topics in Cognitive Science, Vol. 8 (2016), Iss. 3 P.685

    https://doi.org/10.1111/tops.12207 [Citations: 16]
  17. Handbook of Research on Digital Marketing Innovations in Social Entrepreneurship and Solidarity Economics

    Google Trends Metadata as a Revenue Indicator for Digital Marketing Activities in Spanish Businesses

    Palma-Ruiz, Jesús Manuel | Gómez-Martínez, Raúl

    2019

    https://doi.org/10.4018/978-1-5225-8939-6.ch015 [Citations: 2]
  18. COVID-19, lockdowns and well-being: Evidence from Google Trends

    Brodeur, Abel | Clark, Andrew E. | Fleche, Sarah | Powdthavee, Nattavudh

    Journal of Public Economics, Vol. 193 (2021), Iss. P.104346

    https://doi.org/10.1016/j.jpubeco.2020.104346 [Citations: 410]
  19. Avoidance behavior against air pollution: evidence from online search indices for anti-PM2.5 masks and air filters in Chinese cities

    Liu, Tong | He, Guojun | Lau, Alexis

    Environmental Economics and Policy Studies, Vol. 20 (2018), Iss. 2 P.325

    https://doi.org/10.1007/s10018-017-0196-3 [Citations: 59]
  20. Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach

    Bangwayo-Skeete, Prosper F. | Skeete, Ryan W.

    Tourism Management, Vol. 46 (2015), Iss. P.454

    https://doi.org/10.1016/j.tourman.2014.07.014 [Citations: 250]
  21. Data Science for Financial Econometrics

    A Theory-Based Lasso for Time-Series Data

    Ahrens, Achim | Aitken, Christopher | Ditzen, Jan | Ersoy, Erkal | Kohns, David | Schaffer, Mark E.

    2021

    https://doi.org/10.1007/978-3-030-48853-6_1 [Citations: 0]
  22. Internet Search Behavior, Liquidity and Prices in the Housing Market

    van Dijk, Dorinth W. | Francke, Marc K.

    Real Estate Economics, Vol. 46 (2018), Iss. 2 P.368

    https://doi.org/10.1111/1540-6229.12187 [Citations: 31]
  23. Using newspapers for tracking the business cycle: a comparative study for Germany and Switzerland

    Iselin, David | Siliverstovs, Boriss

    Applied Economics, Vol. 48 (2016), Iss. 12 P.1103

    https://doi.org/10.1080/00036846.2015.1093085 [Citations: 14]
  24. Fintech development and bank risk taking in China

    Wang, Rui | Liu, Jiangtao | Luo, Hang(Robin)

    The European Journal of Finance, Vol. 27 (2021), Iss. 4-5 P.397

    https://doi.org/10.1080/1351847X.2020.1805782 [Citations: 132]
  25. How Natural Disasters Can Affect Environmental Concerns, Risk Aversion, and Even Politics: Evidence from Fukushima and Three European Countries

    Goebel, Jan | Krekel, Christian | Tiefenbach, Tim | Ziebarth, Nicolas R.

    SSRN Electronic Journal, Vol. (2015), Iss.

    https://doi.org/10.2139/ssrn.2623499 [Citations: 5]
  26. The German generation internship and the minimum wage introduction: evidence from big data

    Bossler, Mario | Wegmann, Jakob

    Applied Economics, Vol. 51 (2019), Iss. 16 P.1730

    https://doi.org/10.1080/00036846.2018.1528339 [Citations: 2]
  27. FinTech adoption in banks and their liquidity creation

    Wu, Zhuochen | Pathan, Shams | Zheng, Chen

    The British Accounting Review, Vol. (2024), Iss. P.101322

    https://doi.org/10.1016/j.bar.2024.101322 [Citations: 1]
  28. Business Cycle Indication Using Query Logs of Search Engines

    Chen, Jeng-Chien | Chen, Chien Chin

    2010 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, (2010), P.270

    https://doi.org/10.1109/3PGCIC.2010.44 [Citations: 2]
  29. The Power of Travel Search Data in Forecasting the Tourism Demand in Dubai

    Rashad, Ahmed Shoukry

    Forecasting, Vol. 4 (2022), Iss. 3 P.674

    https://doi.org/10.3390/forecast4030036 [Citations: 9]
  30. Pandemic, sanctions and anxiety in Russia’s regions: Business expectations nowcasting

    Fedyunina, A. A. | Yurevich, M. M. | Gorodny, N. A.

    Voprosy Ekonomiki, Vol. (2024), Iss. 3 P.96

    https://doi.org/10.32609/0042-8736-2024-3-96-119 [Citations: 0]
  31. Quantifying the drivers of residential housing demand – an interpretable machine learning approach

    Cajias, Marcelo | Zeitler, Joseph-Alexander

    Journal of European Real Estate Research, Vol. 16 (2023), Iss. 2 P.172

    https://doi.org/10.1108/JERER-02-2023-0008 [Citations: 0]
  32. Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU

    van der Wielen, Wouter | Barrios, Salvador

    Journal of Economics and Business, Vol. 115 (2021), Iss. P.105970

    https://doi.org/10.1016/j.jeconbus.2020.105970 [Citations: 40]
  33. Using Internet Data to Account for Special Events in Economic Forecasting

    Schmidt, Torsten | Vosen, Simeon

    SSRN Electronic Journal, Vol. (2012), Iss.

    https://doi.org/10.2139/ssrn.2200402 [Citations: 1]
  34. Big Data sources and methods for social and economic analyses

    Blazquez, Desamparados | Domenech, Josep

    Technological Forecasting and Social Change, Vol. 130 (2018), Iss. P.99

    https://doi.org/10.1016/j.techfore.2017.07.027 [Citations: 202]
  35. CAN MACHINE LEARNING ALGORITHMS ASSOCIATED WITH TEXT MINING FROM INTERNET DATA IMPROVE HOUSING PRICE PREDICTION PERFORMANCE?

    Guo, Jian-qiang | Chiang, Shu-hen | Liu, Min | Yang, Chi-Chun | Guo, Kai-yi

    International Journal of Strategic Property Management, Vol. 24 (2020), Iss. 5 P.300

    https://doi.org/10.3846/ijspm.2020.12742 [Citations: 12]
  36. Improving unemployment rate forecasts at regional level in Romania using Google Trends

    Mihaela, Simionescu

    Technological Forecasting and Social Change, Vol. 155 (2020), Iss. P.120026

    https://doi.org/10.1016/j.techfore.2020.120026 [Citations: 30]
  37. Can Google Search Data Help Predict Macroeconomic Series?

    Niesert, Robin | Oorschot, Jochem | Veldhuisen, Chris | Brons, Kester | Lange, Rutger‐Jan

    SSRN Electronic Journal , Vol. (2018), Iss.

    https://doi.org/10.2139/ssrn.3353123 [Citations: 1]
  38. Postpandemic international tourism restart: effect of border control and vaccination

    Dong, Yani | Li, Yan | Hua, Hai-Yan | Li, Wei

    Journal of Business & Industrial Marketing, Vol. (2023), Iss.

    https://doi.org/10.1108/JBIM-08-2021-0371 [Citations: 0]
  39. Quantifying the Search Behaviour of Different Demographics Using Google Correlate

    Letchford, Adrian | Preis, Tobias | Moat, Helen Susannah | Perc, Matjaz

    PLOS ONE, Vol. 11 (2016), Iss. 2 P.e0149025

    https://doi.org/10.1371/journal.pone.0149025 [Citations: 4]
  40. Agenda Setting in the Internet Age: The Reciprocity between Online Searches and Issue Salience

    Lee, ByungGu | Kim, Jinha | Scheufele, Dietram A.

    International Journal of Public Opinion Research, Vol. 28 (2016), Iss. 3 P.440

    https://doi.org/10.1093/ijpor/edv026 [Citations: 12]
  41. Characterizing the Time-Perspective of Nations with Search Engine Query Data

    Noguchi, Takao | Stewart, Neil | Olivola, Christopher Y. | Moat, Helen Susannah | Preis, Tobias | Perc, Matjaž

    PLoS ONE, Vol. 9 (2014), Iss. 4 P.e95209

    https://doi.org/10.1371/journal.pone.0095209 [Citations: 16]
  42. The Impact of Unemployment Insurance on Job Search: Evidence from Google Search Data

    Baker, Scott R. | Fradkin, Andrey

    The Review of Economics and Statistics, Vol. 99 (2017), Iss. 5 P.756

    https://doi.org/10.1162/REST_a_00674 [Citations: 94]
  43. A Cross-Country Analysis of Unemployment and Bonds with Long-Memory Relations

    Dimpfl, Thomas | Langen, Tobias

    SSRN Electronic Journal, Vol. (2015), Iss.

    https://doi.org/10.2139/ssrn.2576345 [Citations: 0]
  44. Constructing a new leading indicator for unemployment from a survey among German employment agencies

    Hutter, Christian | Weber, Enzo

    Applied Economics, Vol. 47 (2015), Iss. 33 P.3540

    https://doi.org/10.1080/00036846.2015.1018672 [Citations: 11]
  45. Coping with demand volatility in retail pharmacies with the aid of big data exploration

    Papanagnou, Christos I. | Matthews-Amune, Omeiza

    Computers & Operations Research, Vol. 98 (2018), Iss. P.343

    https://doi.org/10.1016/j.cor.2017.08.009 [Citations: 27]
  46. Google searches and twitter mood: nowcasting telecom sales performance

    Bughin, Jacques

    NETNOMICS: Economic Research and Electronic Networking, Vol. 16 (2015), Iss. 1-2 P.87

    https://doi.org/10.1007/s11066-015-9096-5 [Citations: 10]
  47. Fire Loss Assessment Model Based on Internet Search Engine Query Data

    Hao, Yulu | Liu, Chang | Li, Linyao | Wang, Jianyu | Chen, Yanqiu | Chen, Junmin

    Fire Technology, Vol. (2023), Iss.

    https://doi.org/10.1007/s10694-023-01509-1 [Citations: 0]
  48. How fintech adoption is affecting the size of rural bank lending?

    Chao, Nan | Yang, Haifen

    Applied Economics Letters, Vol. (2023), Iss. P.1

    https://doi.org/10.1080/13504851.2023.2259584 [Citations: 2]
  49. Gonorrhea incidence forecasting research based on Baidu search data

    Bao, Jia-xing | Lv, Ben-fu | Peng, Geng | Li, Na

    2013 International Conference on Management Science and Engineering 20th Annual Conference Proceedings, (2013), P.36

    https://doi.org/10.1109/ICMSE.2013.6586259 [Citations: 12]
  50. Can Google data help predict French youth unemployment?

    Fondeur, Y. | Karamé, F.

    Economic Modelling, Vol. 30 (2013), Iss. P.117

    https://doi.org/10.1016/j.econmod.2012.07.017 [Citations: 104]
  51. Digital Transformation and Global Society

    Measurement of Public Interest in Ecological Matters Through Online Activity and Environmental Monitoring

    Verzilin, Dmitry | Maximova, Tatyana | Antokhin, Yury | Sokolova, Irina

    2018

    https://doi.org/10.1007/978-3-030-02843-5_11 [Citations: 2]
  52. Computational socioeconomics

    Gao, Jian | Zhang, Yi-Cheng | Zhou, Tao

    Physics Reports, Vol. 817 (2019), Iss. P.1

    https://doi.org/10.1016/j.physrep.2019.05.002 [Citations: 90]
  53. Google Search in Exchange Rate Models: Hype or Hope?

    Herzog, Bodo | dos Santos, Lana

    Journal of Risk and Financial Management, Vol. 14 (2021), Iss. 11 P.512

    https://doi.org/10.3390/jrfm14110512 [Citations: 1]
  54. High spatial and temporal detail in timely prediction of tourism demand

    Emili, Silvia | Gardini, Attilio | Foscolo, Enrico

    International Journal of Tourism Research, Vol. 22 (2020), Iss. 4 P.451

    https://doi.org/10.1002/jtr.2348 [Citations: 11]
  55. Measuring Employment Demand Using Internet Search Data

    Chancellor, Stevie | Counts, Scott

    Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, (2018), P.1

    https://doi.org/10.1145/3173574.3173696 [Citations: 12]
  56. Does Google search index really help predicting stock market volatility? Evidence from a modified mixed data sampling model on volatility

    Xu, Qifa | Bo, Zhongpu | Jiang, Cuixia | Liu, Yezheng

    Knowledge-Based Systems, Vol. 166 (2019), Iss. P.170

    https://doi.org/10.1016/j.knosys.2018.12.025 [Citations: 48]
  57. Multiple-Aspect Analysis of Semantic Trajectories

    Nowcasting Unemployment Rates with Smartphone GPS Data

    Moriwaki, Daisuke

    2020

    https://doi.org/10.1007/978-3-030-38081-6_3 [Citations: 6]
  58. Internet searches and transactions on the Dutch housing market

    Veldhuizen, Sander van | Vogt, Benedikt | Voogt, Bart

    Applied Economics Letters, Vol. 23 (2016), Iss. 18 P.1321

    https://doi.org/10.1080/13504851.2016.1153785 [Citations: 11]
  59. Search for a New Home: Refugee Stock and Google Search

    Sanliturk, Ebru | Billari, Francesco C.

    International Migration Review, Vol. (2024), Iss.

    https://doi.org/10.1177/01979183241275452 [Citations: 0]
  60. Using Online Tools to Assess Public Responses to Climate Change Mitigation Policies in Japan

    Chay, Sengtha | Sasaki, Nophea

    Future Internet, Vol. 3 (2011), Iss. 2 P.117

    https://doi.org/10.3390/fi3020117 [Citations: 9]
  61. Investor sentiment and aggregate stock returns: the role of investor attention

    Mbanga, Cedric | Darrat, Ali F. | Park, Jung Chul

    Review of Quantitative Finance and Accounting, Vol. 53 (2019), Iss. 2 P.397

    https://doi.org/10.1007/s11156-018-0753-2 [Citations: 46]
  62. Forecasting Spanish unemployment with Google Trends and dimension reduction techniques

    Mulero, Rodrigo | García-Hiernaux, Alfredo

    SERIEs, Vol. 12 (2021), Iss. 3 P.329

    https://doi.org/10.1007/s13209-021-00231-x [Citations: 10]
  63. Hedging performance using google Trends–Evidence from the indian forex options market

    Chi, Tsung-Li | Liu, Hung-Tsen | Chang, Chia-Chien

    International Review of Economics & Finance, Vol. 85 (2023), Iss. P.107

    https://doi.org/10.1016/j.iref.2023.01.003 [Citations: 2]
  64. Using Google searches of firm products to detect revenue management

    Chiu, Peng-Chia | Teoh, Siew Hong | Zhang, Yinglei | Huang, Xuan

    Accounting, Organizations and Society, Vol. 109 (2023), Iss. P.101457

    https://doi.org/10.1016/j.aos.2023.101457 [Citations: 5]
  65. Natural Resources Management

    How Does Public Attention Influence Natural Gas Price?

    Li, Xin | Ma, Jian | Shang, Wei | Wang, Shouyang | Zhang, Xun

    2017

    https://doi.org/10.4018/978-1-5225-0803-8.ch070 [Citations: 0]
  66. Proposed coal power plants and coal-to-liquids plants in the US: Which ones survive and why?

    Fantazzini, Dean | Maggi, Mario

    Energy Strategy Reviews, Vol. 7 (2015), Iss. P.9

    https://doi.org/10.1016/j.esr.2014.11.005 [Citations: 12]
  67. Quantifying the semantics of search behavior before stock market moves

    Curme, Chester | Preis, Tobias | Stanley, H. Eugene | Moat, Helen Susannah

    Proceedings of the National Academy of Sciences, Vol. 111 (2014), Iss. 32 P.11600

    https://doi.org/10.1073/pnas.1324054111 [Citations: 127]
  68. Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale

    Anticipating Stock Market Movements with Google and Wikipedia

    Moat, Helen Susannah | Curme, Chester | Stanley, H. Eugene | Preis, Tobias

    2014

    https://doi.org/10.1007/978-94-017-8704-8_4 [Citations: 5]
  69. 'Nowcasting' the Belgian Economy

    Bughin, Jacques R.

    SSRN Electronic Journal, Vol. (2011), Iss.

    https://doi.org/10.2139/ssrn.1903791 [Citations: 7]
  70. European depositors’ behavior and crisis sentiment

    Anastasiou, Dimitrios | Drakos, Konstantinos

    Journal of Economic Behavior & Organization, Vol. 184 (2021), Iss. P.117

    https://doi.org/10.1016/j.jebo.2021.01.028 [Citations: 21]
  71. How Does Public Attention Influence Natural Gas Price?

    Li, Xin | Ma, Jian | Shang, Wei | Wang, Shouyang | Zhang, Xun

    International Journal of Knowledge and Systems Science, Vol. 5 (2014), Iss. 2 P.65

    https://doi.org/10.4018/ijkss.2014040105 [Citations: 2]
  72. Google Trends and the forecasting performance of exchange rate models

    Bulut, Levent

    Journal of Forecasting, Vol. 37 (2018), Iss. 3 P.303

    https://doi.org/10.1002/for.2500 [Citations: 54]
  73. Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations

    Claveria, Oscar

    Journal for Labour Market Research, Vol. 53 (2019), Iss. 1

    https://doi.org/10.1186/s12651-019-0253-4 [Citations: 22]
  74. Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends

    Monge, Manuel | Claudio-Quiroga, Gloria | Poza, Carlos

    International Economics, Vol. 177 (2024), Iss. P.100462

    https://doi.org/10.1016/j.inteco.2023.100462 [Citations: 0]
  75. Identifying policy challenges of COVID-19 in hardly reliable data and judging the success of lockdown measures

    Bonacini, Luca | Gallo, Giovanni | Patriarca, Fabrizio

    Journal of Population Economics, Vol. 34 (2021), Iss. 1 P.275

    https://doi.org/10.1007/s00148-020-00799-x [Citations: 48]
  76. Comparing Agenda-Setting Effects for the Issue of Migration Measured with Three Different Indicators of the Public Agenda

    Maurer, Marcus | Jost, Pablo

    International Journal of Public Opinion Research, Vol. 36 (2024), Iss. 3

    https://doi.org/10.1093/ijpor/edae037 [Citations: 0]
  77. Nowcasting Unemployment Rates with Google Searches: Evidence from the Visegrad Group Countries

    Pavlicek, Jaroslav | Kristoufek, Ladislav | Hidalgo, César A

    PLOS ONE, Vol. 10 (2015), Iss. 5 P.e0127084

    https://doi.org/10.1371/journal.pone.0127084 [Citations: 38]
  78. Tracking employment shocks using mobile phone data

    Toole, Jameson L. | Lin, Yu-Ru | Muehlegger, Erich | Shoag, Daniel | González, Marta C. | Lazer, David

    Journal of The Royal Society Interface, Vol. 12 (2015), Iss. 107 P.20150185

    https://doi.org/10.1098/rsif.2015.0185 [Citations: 65]
  79. The Effect of Consumer Interest on Islamic Bank and Conventional Bank Mobile Banking: An Analysis Using Google Trends

    Sudrajat, Asep Rahmat |

    IOP Conference Series: Materials Science and Engineering, Vol. 662 (2019), Iss. 6 P.062019

    https://doi.org/10.1088/1757-899X/662/6/062019 [Citations: 1]
  80. Nowcasting and Forecasting the Monthly Food Stamps Data in the US Using Online Search Data

    Fantazzini, Dean | Preis, Tobias

    PLoS ONE, Vol. 9 (2014), Iss. 11 P.e111894

    https://doi.org/10.1371/journal.pone.0111894 [Citations: 4]
  81. Google Trendler Verileri ile Ekoturizm Kavramının İncelenmesi

    ESER, Nazlı | KANCA, Bayram

    MANAS Sosyal Araştırmalar Dergisi, Vol. 11 (2022), Iss. 2 P.798

    https://doi.org/10.33206/mjss.897946 [Citations: 0]
  82. Google data in bridge equation models for German GDP

    Götz, Thomas B. | Knetsch, Thomas A.

    International Journal of Forecasting, Vol. 35 (2019), Iss. 1 P.45

    https://doi.org/10.1016/j.ijforecast.2018.08.001 [Citations: 38]
  83. Collective Perception and Exchange Rates

    Reed, Markum | Ankouri, Kaotar

    Journal of Behavioral Finance, Vol. 20 (2019), Iss. 1 P.53

    https://doi.org/10.1080/15427560.2018.1461100 [Citations: 3]
  84. Do Seasons Have an Influence on the Incidence of Depression? The Use of an Internet Search Engine Query Data as a Proxy of Human Affect

    Yang, Albert C. | Huang, Norden E. | Peng, Chung-Kang | Tsai, Shih-Jen | Neylon, Cameron

    PLoS ONE, Vol. 5 (2010), Iss. 10 P.e13728

    https://doi.org/10.1371/journal.pone.0013728 [Citations: 108]
  85. The Relationship Exploration between Public Migration Attention and Population Migration from a Perspective of Search Query

    Li, Chun | He, Jianhua | Duan, Xingwu

    International Journal of Environmental Research and Public Health, Vol. 17 (2020), Iss. 7 P.2388

    https://doi.org/10.3390/ijerph17072388 [Citations: 3]
  86. Aggregate Learning for Mixed Frequency Data

    Toda, Takamichi | Moriwaki, Daisuke | Ota, Kazuhiro

    2022 IEEE International Conference on Big Data (Big Data), (2022), P.4157

    https://doi.org/10.1109/BigData55660.2022.10020900 [Citations: 1]
  87. Now-And Forecasting Unemployment from Google's Job-Search Activity

    Davalos, Jorge

    SSRN Electronic Journal , Vol. (2015), Iss.

    https://doi.org/10.2139/ssrn.3038007 [Citations: 0]
  88. Sentiment-based commercial real estate forecasting with Google search volume data

    Alexander Dietzel, Marian | Braun, Nicole | Schäfers, Wolfgang

    Journal of Property Investment & Finance, Vol. 32 (2014), Iss. 6 P.540

    https://doi.org/10.1108/JPIF-01-2014-0004 [Citations: 37]
  89. Forecasting stock market movements using Google Trend searches

    Huang, Melody Y. | Rojas, Randall R. | Convery, Patrick D.

    Empirical Economics, Vol. 59 (2020), Iss. 6 P.2821

    https://doi.org/10.1007/s00181-019-01725-1 [Citations: 48]
  90. The Effects of Germany’s Statutory Minimum Wage on Employment and Welfare Dependency

    Schmitz, Sebastian

    German Economic Review, Vol. 20 (2019), Iss. 3 P.330

    https://doi.org/10.1111/geer.12196 [Citations: 18]
  91. A Mixed Frequency BVAR for the Euro Area Labour Market*

    Consolo, Agostino | Foroni, Claudia | Martínez Hernández, Catalina

    Oxford Bulletin of Economics and Statistics, Vol. 85 (2023), Iss. 5 P.1048

    https://doi.org/10.1111/obes.12555 [Citations: 6]
  92. Using big data to predict collective behavior in the real world

    Moat, Helen Susannah | Preis, Tobias | Olivola, Christopher Y. | Liu, Chengwei | Chater, Nick

    Behavioral and Brain Sciences, Vol. 37 (2014), Iss. 1 P.92

    https://doi.org/10.1017/S0140525X13001817 [Citations: 61]
  93. Covid-19 Salgınının Konut Tercihlerine Etkisi

    GÖNEN, Tahir | ÇETİNKAYA, Emre

    Kent ve Çevre Araştırmaları Dergisi, Vol. 3 (2021), Iss. 2 P.25

    https://doi.org/10.48118/yykentcevre.1008835 [Citations: 2]
  94. IS BITCOIN BUSINESS INCOME OR SPECULATIVE FOOLERY? NEW IDEAS THROUGH AN IMPROVED FREQUENCY DOMAIN ANALYSIS

    BOUOIYOUR, JAMAL | SELMI, REFK | TIWARI, AVIRAL KUMAR

    Annals of Financial Economics, Vol. 10 (2015), Iss. 01 P.1550002

    https://doi.org/10.1142/S2010495215500025 [Citations: 60]
  95. In Search of a Job: Forecasting Employment Growth Using Google Trends

    Borup, Daniel | Schütte, Erik Christian Montes

    Journal of Business & Economic Statistics, Vol. 40 (2022), Iss. 1 P.186

    https://doi.org/10.1080/07350015.2020.1791133 [Citations: 51]
  96. The Predictive Power of Google Searches in Forecasting Unemployment

    D'Amuri, Francesco | Marcucci, Juri

    SSRN Electronic Journal, Vol. (2012), Iss.

    https://doi.org/10.2139/ssrn.2207915 [Citations: 38]
  97. Forecasting tourism demand with composite search index

    Li, Xin | Pan, Bing | Law, Rob | Huang, Xiankai

    Tourism Management, Vol. 59 (2017), Iss. P.57

    https://doi.org/10.1016/j.tourman.2016.07.005 [Citations: 264]
  98. Forecasting Tourism Demand with an Improved Mixed Data Sampling Model

    Wen, Long | Liu, Chang | Song, Haiyan | Liu, Han

    Journal of Travel Research, Vol. 60 (2021), Iss. 2 P.336

    https://doi.org/10.1177/0047287520906220 [Citations: 49]
  99. The Baidu Index: Uses in predicting tourism flows –A case study of the Forbidden City

    Huang, Xiankai | Zhang, Lifeng | Ding, Yusi

    Tourism Management, Vol. 58 (2017), Iss. P.301

    https://doi.org/10.1016/j.tourman.2016.03.015 [Citations: 168]
  100. Nowcasting services trade for the G7 economies

    Jaax, Alexander | Mourougane, Annabelle | Gonzales, Frederic

    The World Economy, Vol. 47 (2024), Iss. 4 P.1336

    https://doi.org/10.1111/twec.13477 [Citations: 0]
  101. Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing?

    Vicente, María Rosalía | López-Menéndez, Ana J. | Pérez, Rigoberto

    Technological Forecasting and Social Change, Vol. 92 (2015), Iss. P.132

    https://doi.org/10.1016/j.techfore.2014.12.005 [Citations: 66]
  102. Data mining for unemployment rate prediction using search engine query data

    Xu, Wei | Li, Ziang | Cheng, Cheng | Zheng, Tingting

    Service Oriented Computing and Applications, Vol. 7 (2013), Iss. 1 P.33

    https://doi.org/10.1007/s11761-012-0122-2 [Citations: 25]
  103. Forecasting tourism demand using search query data: A hybrid modelling approach

    Wen, Long | Liu, Chang | Song, Haiyan

    Tourism Economics, Vol. 25 (2019), Iss. 3 P.309

    https://doi.org/10.1177/1354816618768317 [Citations: 40]
  104. Inferring China’s excess mortality during the COVID-19 pandemic using online mourning and funeral search volume

    Huang, Li | Li, Oliver Zhen | Yin, Ximing

    Scientific Reports, Vol. 13 (2023), Iss. 1

    https://doi.org/10.1038/s41598-023-42979-1 [Citations: 1]
  105. USING BAIDU INDEX TO NOWCAST MOBILE PHONE SALES IN CHINA

    FANG, JIANCHUN | WU, WANSHAN | LU, ZHOU | CHO, EUNHO

    The Singapore Economic Review, Vol. 64 (2019), Iss. 01 P.83

    https://doi.org/10.1142/S021759081743007X [Citations: 17]
  106. Googling the WTO: What Search-Engine Data Tell Us About the Political Economy of Institutions

    Pelc, Krzysztof J.

    International Organization, Vol. 67 (2013), Iss. 3 P.629

    https://doi.org/10.1017/S0020818313000179 [Citations: 38]
  107. Semantic Interoperability for IoT Platforms in Support of Decision Making: An Experiment on Early Wildfire Detection

    Kalatzis, Nikos | Routis, George | Marinellis, Yiorgos | Avgeris, Marios | Roussaki, Ioanna | Papavassiliou, Symeon | Anagnostou, Miltiades

    Sensors, Vol. 19 (2019), Iss. 3 P.528

    https://doi.org/10.3390/s19030528 [Citations: 20]
  108. High Spatial and Temporal Detail in Timely Prediction of Tourism Demand

    Emili, Silvia | Gardini, Attilio

    SSRN Electronic Journal , Vol. (2018), Iss.

    https://doi.org/10.2139/ssrn.3195159 [Citations: 0]
  109. Using online job postings to predict key labour market indicators

    Štefánik, Miroslav | Lyócsa, Štefan | Bilka, Matúš

    Social Science Computer Review, Vol. 41 (2023), Iss. 5 P.1630

    https://doi.org/10.1177/08944393221085705 [Citations: 1]
  110. Prospects for utilisation of non-vacancy Internet data in labour market analysis—an overview

    Lenaerts, Karolien | Beblavý, Miroslav | Fabo, Brian

    IZA Journal of Labor Economics, Vol. 5 (2016), Iss. 1

    https://doi.org/10.1186/s40172-016-0042-z [Citations: 12]
  111. Soziale Medien

    Visualisierung großer Datenmengen aus Social Media Diensten

    Rahlf, Thomas | Weller, Katrin

    2014

    https://doi.org/10.1007/978-3-658-05327-7_8 [Citations: 1]
  112. Using the Eye of the Storm to Predict the Wave of Covid-19 UI Claims

    Aaronson, Daniel | Brave, Scott A. | Butters, R. | Sacks, Daniel W. | Seo, Boyoung

    SSRN Electronic Journal , Vol. (2020), Iss.

    https://doi.org/10.2139/ssrn.3561298 [Citations: 2]
  113. The Demand for Information

    Sims, Gordon

    SSRN Electronic Journal, Vol. (2010), Iss.

    https://doi.org/10.2139/ssrn.1630244 [Citations: 0]
  114. Topics in Statistical Simulation

    Timely Indices for Residential Construction Sector

    Gardini, Attilio | Foscolo, Enrico

    2014

    https://doi.org/10.1007/978-1-4939-2104-1_19 [Citations: 0]
  115. On the Usefulness of Constant Gain Least Squares when Forecasting the Unemployment Rate

    Antipin, Jan-Erik | Boumediene, Farid Jimmy | Österholm, Pär

    Applied Economics Quarterly, Vol. 60 (2014), Iss. 4 P.315

    https://doi.org/10.3790/aeq.60.4.315 [Citations: 0]
  116. Defining a new sector in the green economy: Tracking the techno-cultural emergence of the cleantech sector, 1990–2010

    Caprotti, Federico

    Technology in Society, Vol. 46 (2016), Iss. P.80

    https://doi.org/10.1016/j.techsoc.2016.04.007 [Citations: 6]
  117. In search of the determinants of European asset market comovements

    Gomes, Pedro | Taamouti, Abderrahim

    International Review of Economics & Finance, Vol. 44 (2016), Iss. P.103

    https://doi.org/10.1016/j.iref.2016.03.005 [Citations: 15]
  118. Forecasting with Artificial Intelligence

    Enhanced Forecasting with LSTVAR-ANN Hybrid Model: Application in Monetary Policy and Inflation Forecasting

    Chojnowski, Michał

    2023

    https://doi.org/10.1007/978-3-031-35879-1_13 [Citations: 0]
  119. A “fitness” Theme May Mitigate Regional Prevalence of Overweight and Obesity: Evidence from Google Search and Tweets

    Liang, Bo | Wang, Ye | Tsou, Ming-Hsiang

    Journal of Health Communication, Vol. 24 (2019), Iss. 9 P.683

    https://doi.org/10.1080/10810730.2019.1657526 [Citations: 5]
  120. Advances in Pacific Basin Business, Economics and Finance

    Google Search Trends and Exchange Rate Volatility – Evidence from India's Currency Market

    Fan Chiang, Hsiu-Chen | Jiang, Pei-Xuan | Chang, Chia-Chien

    2021

    https://doi.org/10.1108/S2514-465020210000009010 [Citations: 1]
  121. Media's Influence on LGBTQ Support Across Africa

    Winkler, Stephen

    British Journal of Political Science, Vol. 51 (2021), Iss. 2 P.807

    https://doi.org/10.1017/S000712341900019X [Citations: 11]
  122. Absenteeism in the Italian Public Sector: The Effects of Changes in Sick Leave Policy

    De Paola, Maria | Scoppa, Vincenzo | Pupo, Valeria

    Journal of Labor Economics, Vol. 32 (2014), Iss. 2 P.337

    https://doi.org/10.1086/674986 [Citations: 63]
  123. Continuing vocational training in times of economic uncertainty: an event-study analysis in real time

    Dauth, Christine | Lang, Julia

    Journal for Labour Market Research, Vol. 58 (2024), Iss. 1

    https://doi.org/10.1186/s12651-024-00373-y [Citations: 0]
  124. Algorithms from and for Nature and Life

    Determining the Similarity Between US Cities Using a Gravity Model for Search Engine Query Data

    Hofmarcher, Paul | Grün, Bettina | Hornik, Kurt | Mair, Patrick

    2013

    https://doi.org/10.1007/978-3-319-00035-0_24 [Citations: 0]
  125. A Model for the Determination of Pollen Count Using Google Search Queries for Patients Suffering from Allergic Rhinitis

    König, Volker | Mösges, Ralph

    Journal of Allergy, Vol. 2014 (2014), Iss. P.1

    https://doi.org/10.1155/2014/381983 [Citations: 7]
  126. How natural disasters can affect environmental concerns, risk aversion, and even politics: evidence from Fukushima and three European countries

    Goebel, Jan | Krekel, Christian | Tiefenbach, Tim | Ziebarth, Nicolas R.

    Journal of Population Economics, Vol. 28 (2015), Iss. 4 P.1137

    https://doi.org/10.1007/s00148-015-0558-8 [Citations: 59]
  127. Can Google search data help predict macroeconomic series?

    Niesert, Robin F. | Oorschot, Jochem A. | Veldhuisen, Christian P. | Brons, Kester | Lange, Rutger-Jan

    International Journal of Forecasting, Vol. 36 (2020), Iss. 3 P.1163

    https://doi.org/10.1016/j.ijforecast.2018.12.006 [Citations: 29]
  128. Ciclos de atenção a dietas da moda e tendências de busca na internet pelo Google trends

    Passos, Jasilaine Andrade | Vasconcellos-Silva, Paulo Roberto | Santos, Ligia Amparo da Silva

    Ciência & Saúde Coletiva, Vol. 25 (2020), Iss. 7 P.2615

    https://doi.org/10.1590/1413-81232020257.23892018 [Citations: 8]
  129. Perceived vs actual financial crisis and bank credit standards: Is there any indication of self-fulfilling prophecy?

    Anastasiou, Dimitrios | Bragoudakis, Zacharias | Giannoulakis, Stelios

    Research in International Business and Finance, Vol. 58 (2021), Iss. P.101486

    https://doi.org/10.1016/j.ribaf.2021.101486 [Citations: 4]
  130. Studying Migrants with the Help of the Internet: Methods from Psychology

    Reips, Ulf-Dietrich | Buffardi, Laura E.

    Journal of Ethnic and Migration Studies, Vol. 38 (2012), Iss. 9 P.1405

    https://doi.org/10.1080/1369183X.2012.698208 [Citations: 29]
  131. Fintech adoption, the regulatory environment and bank stability: An empirical investigation from GCC economies

    Khan, Habib Hussain | Khan, Shoaib | Ghafoor, Abdul

    Borsa Istanbul Review, Vol. 23 (2023), Iss. 6 P.1263

    https://doi.org/10.1016/j.bir.2023.10.010 [Citations: 18]
  132. Does Investor Attention Affect Stock Trading and Returns? Evidence from Publicly Listed Firms in China

    Yang, Dan | Ma, Tingyu | Wang, Yuetang | Wang, Guojun

    Journal of Behavioral Finance, Vol. 22 (2021), Iss. 4 P.368

    https://doi.org/10.1080/15427560.2020.1785469 [Citations: 20]
  133. A Monthly Consumption Indicator for Germany Based on Internet Search Query Data

    Schmidt, Torsten | Vosen, Simeon

    SSRN Electronic Journal, Vol. (2010), Iss.

    https://doi.org/10.2139/ssrn.1692719 [Citations: 3]
  134. Real-time nowcasting the monthly unemployment rates with daily Google Trends data

    Costa, Eduardo André | Silva, Maria Eduarda | Galvão, Ana Beatriz

    Socio-Economic Planning Sciences, Vol. 95 (2024), Iss. P.101963

    https://doi.org/10.1016/j.seps.2024.101963 [Citations: 0]
  135. Composite leading search index: a preprocessing method of internet search data for stock trends prediction

    Liu, Ying | Chen, Yibing | Wu, Sheng | Peng, Geng | Lv, Benfu

    Annals of Operations Research, Vol. 234 (2015), Iss. 1 P.77

    https://doi.org/10.1007/s10479-014-1779-z [Citations: 27]
  136. Google search volumes for portfolio management: performances and asset concentration

    Maggi, Mario | Uberti, Pierpaolo

    Annals of Operations Research, Vol. 299 (2021), Iss. 1-2 P.163

    https://doi.org/10.1007/s10479-019-03424-7 [Citations: 3]
  137. Forecasting Chinese tourist volume with search engine data

    Yang, Xin | Pan, Bing | Evans, James A. | Lv, Benfu

    Tourism Management, Vol. 46 (2015), Iss. P.386

    https://doi.org/10.1016/j.tourman.2014.07.019 [Citations: 329]
  138. A prediction study on e-commerce sales based on structure time series model and web search data

    Wei, Dai | Geng, Peng | Ying, Liu | Shuaipeng, Li

    The 26th Chinese Control and Decision Conference (2014 CCDC), (2014), P.5346

    https://doi.org/10.1109/CCDC.2014.6852219 [Citations: 10]
  139. Forecasting Private Consumption: Survey-Based Indicators vs. Google Trends

    Schmidt, Torsten | Vosen, Simeon

    SSRN Electronic Journal, Vol. (2009), Iss.

    https://doi.org/10.2139/ssrn.1514369 [Citations: 15]
  140. Bank fintech, liquidity creation, and risk-taking: Evidence from China

    Fang, Yi | Wang, Qi | Wang, Fan | Zhao, Yang

    Economic Modelling, Vol. 127 (2023), Iss. P.106445

    https://doi.org/10.1016/j.econmod.2023.106445 [Citations: 11]
  141. Short‐term forecasting of the US unemployment rate

    Maas, Benedikt

    Journal of Forecasting, Vol. 39 (2020), Iss. 3 P.394

    https://doi.org/10.1002/for.2630 [Citations: 18]
  142. Internet finance development and banking market discipline: Evidence from China

    Hou, Xiaohui | Gao, Zhixian | Wang, Qing

    Journal of Financial Stability, Vol. 22 (2016), Iss. P.88

    https://doi.org/10.1016/j.jfs.2016.01.001 [Citations: 98]
  143. What Does Google Trends Tell Us about the Impact of Brexit on the Unemployment Rate in the UK?

    Simionescu, Mihaela | Streimikiene, Dalia | Strielkowski, Wadim

    Sustainability, Vol. 12 (2020), Iss. 3 P.1011

    https://doi.org/10.3390/su12031011 [Citations: 11]
  144. Can internet searches forecast tourism inflows?

    Nikolaos Askitas and Professor Klaus F. Zimmermann, Professor | Artola, Concha | Pinto, Fernando | de Pedraza García, Pablo

    International Journal of Manpower, Vol. 36 (2015), Iss. 1 P.103

    https://doi.org/10.1108/IJM-12-2014-0259 [Citations: 58]
  145. The impact of Internet finance on commercial banks’ risk taking: evidence from China

    Guo, Pin | Shen, Yue

    China Finance and Economic Review, Vol. 4 (2016), Iss. 1

    https://doi.org/10.1186/s40589-016-0039-6 [Citations: 19]
  146. Spurious patterns in Google Trends data - An analysis of the effects on tourism demand forecasting in Germany

    Bokelmann, Björn | Lessmann, Stefan

    Tourism Management, Vol. 75 (2019), Iss. P.1

    https://doi.org/10.1016/j.tourman.2019.04.015 [Citations: 73]
  147. Prediction of online trade growth using search-ANFIS: Transactions on Taobao as examples

    Jiyuan, Wang | Geng, Peng | Wei, Dai

    2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), (2014), P.2566

    https://doi.org/10.1109/FUZZ-IEEE.2014.6891527 [Citations: 0]
  148. Forecasting hotel room demand using search engine data

    Pan, Bing | Chenguang Wu, Doris | Song, Haiyan

    Journal of Hospitality and Tourism Technology, Vol. 3 (2012), Iss. 3 P.196

    https://doi.org/10.1108/17579881211264486 [Citations: 129]
  149. Digitization effects on banks’ financial performance: the case of an African country

    Theiri, Saliha | Hadoussa, Slim

    Competitiveness Review: An International Business Journal , Vol. 34 (2024), Iss. 1 P.144

    https://doi.org/10.1108/CR-10-2022-0147 [Citations: 9]
  150. Which Google keywords influence entrepreneurs? Empirical evidence from Vietnam

    Huynh, Toan Luu Duc

    Asia Pacific Journal of Innovation and Entrepreneurship, Vol. 13 (2019), Iss. 2 P.214

    https://doi.org/10.1108/APJIE-11-2018-0063 [Citations: 8]
  151. Retail investor attention and the limit order book: Intraday analysis of attention-based trading

    Meshcheryakov, Artem | Winters, Drew B.

    International Review of Financial Analysis, Vol. 81 (2022), Iss. P.101627

    https://doi.org/10.1016/j.irfa.2020.101627 [Citations: 12]
  152. Google Trends and Structural Exchange Rate Models for Turkish Lira–US Dollar Exchange Rate

    Bulut, Levent | Dogan, Can

    Review of Middle East Economics and Finance, Vol. 14 (2018), Iss. 2

    https://doi.org/10.1515/rmeef-2017-0026 [Citations: 2]
  153. Entrepreneurial ecosystem, entrepreneurial rate and innovation: the moderating role of internet attention

    Yan, Yan | Guan, Jiancheng

    International Entrepreneurship and Management Journal, Vol. 15 (2019), Iss. 2 P.625

    https://doi.org/10.1007/s11365-018-0493-8 [Citations: 37]
  154. Forecasting unemployment with Google Trends: age, gender and digital divide

    Mulero, Rodrigo | Garcia-Hiernaux, Alfredo

    Empirical Economics, Vol. 65 (2023), Iss. 2 P.587

    https://doi.org/10.1007/s00181-022-02347-w [Citations: 4]
  155. Trouble on my mind: the effect of catastrophic events on people’s worries

    Ehlert, Andree | Seidel, Jan | Weisenfeld, Ursula

    Empirical Economics, Vol. 59 (2020), Iss. 2 P.951

    https://doi.org/10.1007/s00181-019-01682-9 [Citations: 5]
  156. Does sharing economy promote sustainable economic development and energy efficiency? Evidence from OECD countries

    Dabbous, Amal | Tarhini, Abbas

    Journal of Innovation & Knowledge, Vol. 6 (2021), Iss. 1 P.58

    https://doi.org/10.1016/j.jik.2020.11.001 [Citations: 156]
  157. Understanding the market for remanufactured products: what can we learn from online trading and Web search sites?

    Jakowczyk, Marta | Quariguasi Frota Neto, João | Gibson, Andrew | Van Wassenhove, Luk N.

    International Journal of Production Research, Vol. 55 (2017), Iss. 12 P.3465

    https://doi.org/10.1080/00207543.2016.1275872 [Citations: 19]
  158. Characteristics of Bitcoin Users: An Analysis of Google Search Data

    Wilson, Matthew Graham | Yelowitz, Aaron

    SSRN Electronic Journal, Vol. (2014), Iss.

    https://doi.org/10.2139/ssrn.2518603 [Citations: 3]
  159. Evaluation of the Forecast Models of Chinese Tourists to Thailand Based on Search Engine Attention: A Case Study of Baidu

    Tang, Junjian

    Wireless Personal Communications, Vol. 102 (2018), Iss. 4 P.3825

    https://doi.org/10.1007/s11277-018-5413-2 [Citations: 8]
  160. An ontology-based Web mining method for unemployment rate prediction

    Li, Ziang | Xu, Wei | Zhang, Likuan | Lau, Raymond Y.K.

    Decision Support Systems, Vol. 66 (2014), Iss. P.114

    https://doi.org/10.1016/j.dss.2014.06.007 [Citations: 38]
  161. An Estimation Model for Hypertension Drug Demand in Retail Pharmacies with the Aid of Big Data Analytics

    Papanagnou, Christos I. | Matthews-Amune, Omeiza

    2017 IEEE 19th Conference on Business Informatics (CBI), (2017), P.463

    https://doi.org/10.1109/CBI.2017.18 [Citations: 2]
  162. Intraday Online Information Demand and its Relationship to REIT Prices

    Kandlbinder, Katrin | Dietzel, Marian Alexander

    Journal of Real Estate Portfolio Management, Vol. 25 (2019), Iss. 2 P.113

    https://doi.org/10.1080/10835547.2020.1791643 [Citations: 1]
  163. Leveraging Trends in Online Searches for Product Features in Market Response Modeling

    Du, Rex Yuxing | Hu, Ye | Damangir, Sina

    Journal of Marketing, Vol. 79 (2015), Iss. 1 P.29

    https://doi.org/10.1509/jm.12.0459 [Citations: 82]
  164. A Mixed Frequency BVAR for the Euro Area Labour Market

    Consolo, Agostino | Foroni, Claudia | Hernández, Catalina Martínez

    SSRN Electronic Journal , Vol. (2021), Iss.

    https://doi.org/10.2139/ssrn.3939315 [Citations: 1]
  165. Forecasting Destination Weekly Hotel Occupancy with Big Data

    Pan, Bing | Yang, Yang

    Journal of Travel Research, Vol. 56 (2017), Iss. 7 P.957

    https://doi.org/10.1177/0047287516669050 [Citations: 166]
  166. Volatility persistence and asymmetry under the microscope: the role of information demand for gold and oil

    Bampinas, Georgios | Panagiotidis, Theodore | Rouska, Christina

    Scottish Journal of Political Economy, Vol. 66 (2019), Iss. 1 P.180

    https://doi.org/10.1111/sjpe.12177 [Citations: 10]
  167. Towards Better Policy and Practice Using Real-Time Data

    Bersier, Florian

    SSRN Electronic Journal, Vol. (2010), Iss.

    https://doi.org/10.2139/ssrn.1614970 [Citations: 0]
  168. Google Trends and reality: Do the proportions match?

    Siliverstovs, Boriss | Wochner, Daniel S.

    Journal of Economic Behavior & Organization, Vol. 145 (2018), Iss. P.1

    https://doi.org/10.1016/j.jebo.2017.10.011 [Citations: 69]
  169. Worldwide trends in fishing interest indicated by internet search volume

    Wilde, G. R. | Pope, K. L.

    Fisheries Management and Ecology, Vol. 20 (2013), Iss. 2-3 P.211

    https://doi.org/10.1111/fme.12009 [Citations: 38]
  170. Using big data for evaluating development outcomes: A systematic map

    Rathinam, Francis | Khatua, Sayak | Siddiqui, Zeba | Malik, Manya | Duggal, Pallavi | Watson, Samantha | Vollenweider, Xavier

    Campbell Systematic Reviews, Vol. 17 (2021), Iss. 3

    https://doi.org/10.1002/cl2.1149 [Citations: 5]
  171. Applied Data-Centric Social Sciences

    Introduction

    Sato, Aki-Hiro

    2014

    https://doi.org/10.1007/978-4-431-54974-1_1 [Citations: 0]
  172. Predicting macroeconomic indicators from online activity data: A review

    Costa, Eduardo André | Silva, Maria Eduarda

    Statistical Journal of the IAOS, Vol. 40 (2024), Iss. 2 P.403

    https://doi.org/10.3233/SJI-230102 [Citations: 0]
  173. Representative methods of computational socioeconomics

    Zhou, Tao

    Journal of Physics: Complexity, Vol. 2 (2021), Iss. 3 P.031002

    https://doi.org/10.1088/2632-072X/ac2072 [Citations: 2]
  174. Predicting Hotel Demand Using Destination Marketing Organization’s Web Traffic Data

    Yang, Yang | Pan, Bing | Song, Haiyan

    Journal of Travel Research, Vol. 53 (2014), Iss. 4 P.433

    https://doi.org/10.1177/0047287513500391 [Citations: 195]
  175. Google searches and Gasoline prices

    Molnar, Peter | Basta, Milan

    2017 14th International Conference on the European Energy Market (EEM), (2017), P.1

    https://doi.org/10.1109/EEM.2017.7981978 [Citations: 5]
  176. The predictive power of Google searches in forecasting US unemployment

    D’Amuri, Francesco | Marcucci, Juri

    International Journal of Forecasting, Vol. 33 (2017), Iss. 4 P.801

    https://doi.org/10.1016/j.ijforecast.2017.03.004 [Citations: 176]
  177. Consumers’ Reactions to Negative Information on Product Quality: Evidence from Scanner Data

    De Paola, Maria | Scoppa, Vincenzo

    Review of Industrial Organization, Vol. 42 (2013), Iss. 3 P.235

    https://doi.org/10.1007/s11151-012-9365-5 [Citations: 5]
  178. In crisis, we pray: Religiosity and the COVID-19 pandemic

    Bentzen, Jeanet Sinding

    Journal of Economic Behavior & Organization, Vol. 192 (2021), Iss. P.541

    https://doi.org/10.1016/j.jebo.2021.10.014 [Citations: 175]
  179. Application of Big Data and Business Analytics

    References

    2020

    https://doi.org/10.1108/978-1-80043-884-220211010 [Citations: 0]
  180. A Neural Network Based Forecasting Method For the Unemployment Rate Prediction Using the Search Engine Query Data

    Xu, Wei | Zheng, Tingting | Li, Ziang

    2011 IEEE 8th International Conference on e-Business Engineering, (2011), P.9

    https://doi.org/10.1109/ICEBE.2011.21 [Citations: 11]
  181. Statistics of Search Queries in Google as an Indicator of Financial Conditions

    Stolbov, M.

    Voprosy Ekonomiki, Vol. (2011), Iss. 11 P.79

    https://doi.org/10.32609/0042-8736-2011-11-79-93 [Citations: 5]
  182. Googling the WTO: What Search Engine Data Tell Us About the Political Economy of Institutions

    Pelc, Krzysztof

    SSRN Electronic Journal, Vol. (2012), Iss.

    https://doi.org/10.2139/ssrn.1943015 [Citations: 1]
  183. YENİ BİR VERİ KAYNAĞI OLARAK GOOGLE TRENDS: GELECEK YÖNELİMİ ENDEKSİ İLE İLGİLİ BİR DEĞERLENDİRME / Google Trends As A New Data Source: An Evaluation Of The Future Orientation Index

    AYAN, Büşra

    Uluslararası Ekonomi İşletme ve Politika Dergisi, Vol. 4 (2020), Iss. 1 P.61

    https://doi.org/10.29216/ueip.676145 [Citations: 3]
  184. Health shocks and their long-lasting impact on health behaviors: Evidence from the 2009 H1N1 pandemic in Mexico

    Agüero, Jorge M. | Beleche, Trinidad

    Journal of Health Economics, Vol. 54 (2017), Iss. P.40

    https://doi.org/10.1016/j.jhealeco.2017.03.008 [Citations: 56]
  185. Business Ethics Searches: A Socio-Economic and Demographic Analysis of U.S. Google Trends Before and During the 2008 Crisis

    Fauggre, Christophe | Gergaud, Olivier

    SSRN Electronic Journal, Vol. (2015), Iss.

    https://doi.org/10.2139/ssrn.2671331 [Citations: 0]
  186. Tracking the Rise in Popularity of Electronic Nicotine Delivery Systems (Electronic Cigarettes) Using Search Query Surveillance

    Ayers, John W. | Ribisl, Kurt M. | Brownstein, John S.

    American Journal of Preventive Medicine, Vol. 40 (2011), Iss. 4 P.448

    https://doi.org/10.1016/j.amepre.2010.12.007 [Citations: 230]
  187. Does digitalisation affect the adoption of electric vehicles? New regional-level evidence from Google Trends data

    Castellacci, Fulvio | Santoalha, Artur

    Regional Studies, Vol. (2024), Iss. P.1

    https://doi.org/10.1080/00343404.2024.2358829 [Citations: 1]
  188. The Effect of Consumer Interest on Islamic Bank Deposits: An Analysis Using Google Trends

    Paturohman, Sopian | Suhartanto, Dwi | Muflih, Muhammad

    2018 International Conference on Information Technology Systems and Innovation (ICITSI), (2018), P. 105

    https://doi.org/10.1109/ICITSI.2018.8695913 [Citations: 3]
  189. FinTech and financial stability: Threat or opportunity?

    Daud, Siti Nurazira Mohd | Ahmad, Abd Halim | Khalid, Airil | Azman-Saini, W.N.W.

    Finance Research Letters, Vol. 47 (2022), Iss. P.102667

    https://doi.org/10.1016/j.frl.2021.102667 [Citations: 62]
  190. Disagreements in Consumer Inflation Expectations: Empirical Evidence for a Latin American Economy

    Anzoátegui-Zapata, Juan Camilo | Galvis-Ciro, Juan Camilo

    Journal of Business Cycle Research, Vol. 16 (2020), Iss. 2 P.99

    https://doi.org/10.1007/s41549-020-00047-x [Citations: 5]
  191. In Search of a Job: Forecasting Employment Growth Using Google Trends

    Borup, Daniel | Schütte, Erik Christian Montes

    SSRN Electronic Journal , Vol. (2019), Iss.

    https://doi.org/10.2139/ssrn.3423124 [Citations: 2]
  192. Monitoring of non-cigarette tobacco use using Google Trends

    Cavazos-Rehg, Patricia A | Krauss, Melissa J | Spitznagel, Edward L | Lowery, Ashley | Grucza, Richard A | Chaloupka, Frank J | Bierut, Laura Jean

    Tobacco Control, Vol. 24 (2015), Iss. 3 P.249

    https://doi.org/10.1136/tobaccocontrol-2013-051276 [Citations: 38]
  193. General theory of data, artificial intelligence and governance

    de Pedraza, Pablo | Vollbracht, Ian

    Humanities and Social Sciences Communications, Vol. 10 (2023), Iss. 1

    https://doi.org/10.1057/s41599-023-02096-w [Citations: 1]
  194. Can online search data improve the forecast accuracy of pork price in China?

    Ling, Liwen | Zhang, Dabin | Chen, Shanying | Mugera, Amin W.

    Journal of Forecasting, Vol. 39 (2020), Iss. 4 P.671

    https://doi.org/10.1002/for.2649 [Citations: 6]
  195. Research on the energy poverty reduction effects of green finance in the context of economic policy uncertainty

    Zhang, Ziyu | Hao, Ling | Linghu, Yuting | Yi, Hong

    Journal of Cleaner Production, Vol. 410 (2023), Iss. P.137287

    https://doi.org/10.1016/j.jclepro.2023.137287 [Citations: 50]
  196. Google and Democracy

    Real-World Applications

    Richey, Sean | Taylor, J. Benjamin

    2017

    https://doi.org/10.4324/9781315159157-7 [Citations: 0]
  197. COVID-19 outbreak, social response, and early economic effects: a global VAR analysis of cross-country interdependencies

    Milani, Fabio

    Journal of Population Economics, Vol. 34 (2021), Iss. 1 P.223

    https://doi.org/10.1007/s00148-020-00792-4 [Citations: 108]
  198. The internet as a data source for advancement in social sciences

    Nikolaos Askitas and Professor Klaus F. Zimmermann, Professor | Askitas, Nikolaos | Zimmermann, Klaus F.

    International Journal of Manpower, Vol. 36 (2015), Iss. 1 P.2

    https://doi.org/10.1108/IJM-02-2015-0029 [Citations: 61]
  199. Can online user behavior improve the performance of sales prediction in E-commerce?

    Yuan, Hui | Xu, Wei | Wang, Mingming

    2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), (2014), P.2347

    https://doi.org/10.1109/SMC.2014.6974277 [Citations: 6]
  200. Forecasting German car sales using Google data and multivariate models

    Fantazzini, Dean | Toktamysova, Zhamal

    International Journal of Production Economics, Vol. 170 (2015), Iss. P.97

    https://doi.org/10.1016/j.ijpe.2015.09.010 [Citations: 71]
  201. Capturing Curiosity: Using Internet Search Trends to Measure Public Attentiveness

    Ripberger, Joseph T.

    Policy Studies Journal, Vol. 39 (2011), Iss. 2 P.239

    https://doi.org/10.1111/j.1541-0072.2011.00406.x [Citations: 185]
  202. Combining official and Google Trends data to forecast the Italian youth unemployment rate

    Naccarato, Alessia | Falorsi, Stefano | Loriga, Silvia | Pierini, Andrea

    Technological Forecasting and Social Change, Vol. 130 (2018), Iss. P.114

    https://doi.org/10.1016/j.techfore.2017.11.022 [Citations: 61]
  203. Using Search Query Surveillance to Monitor Tax Avoidance and Smoking Cessation following the United States' 2009 “SCHIP” Cigarette Tax Increase

    Ayers, John W. | Ribisl, Kurt | Brownstein, John S. | Carr, Jean

    PLoS ONE, Vol. 6 (2011), Iss. 3 P.e16777

    https://doi.org/10.1371/journal.pone.0016777 [Citations: 46]
  204. Changing Preferences versus Issue Salience: The Political Success of Anti-immigration Parties in Italy

    Magistro, Beatrice | Wittstock, Nicolas

    South European Society and Politics, Vol. 26 (2021), Iss. 3 P.383

    https://doi.org/10.1080/13608746.2021.2009107 [Citations: 2]
  205. Social Phenomena

    Early Signs of Financial Market Moves Reflected by Google Searches

    Preis, Tobias | Moat, Helen Susannah

    2015

    https://doi.org/10.1007/978-3-319-14011-7_5 [Citations: 3]
  206. A bridge between sentiment indicators: What does Google Trends tell us about COVID-19 pandemic and employment expectations in the EU new member states?

    Simionescu, Mihaela | Raišienė, Agota Giedrė

    Technological Forecasting and Social Change, Vol. 173 (2021), Iss. P.121170

    https://doi.org/10.1016/j.techfore.2021.121170 [Citations: 19]
  207. Short-term forecasting of Japanese tourist inflow to South Korea using Google trends data

    Park, Sangkon | Lee, Jungmin | Song, Wonho

    Journal of Travel & Tourism Marketing, Vol. 34 (2017), Iss. 3 P.357

    https://doi.org/10.1080/10548408.2016.1170651 [Citations: 96]
  208. Google Internet search activity and volatility prediction in the market for foreign currency

    Smith, Geoffrey Peter

    Finance Research Letters, Vol. 9 (2012), Iss. 2 P.103

    https://doi.org/10.1016/j.frl.2012.03.003 [Citations: 102]
  209. The Impact of Investor Sentiment on the 'Leverage Effect'

    Son-Turan, Semen

    International Econometric Review, Vol. 8 (2016), Iss. 1 P.4

    https://doi.org/10.33818/ier.278043 [Citations: 1]
  210. Investor attention, index performance, and return predictability

    Vozlyublennaia, Nadia

    Journal of Banking & Finance, Vol. 41 (2014), Iss. P.17

    https://doi.org/10.1016/j.jbankfin.2013.12.010 [Citations: 283]
  211. Tourism, Culture and Heritage in a Smart Economy

    Forecasting British Tourist Inflows to Portugal Using Google Trends Data

    Dinis, Gorete | Costa, Carlos | Pacheco, Osvaldo

    2017

    https://doi.org/10.1007/978-3-319-47732-9_32 [Citations: 1]
  212. Using online vacancies and web surveys to analyse the labour market: a methodological inquiry

    Kureková, Lucia Mýtna | Beblavý, Miroslav | Thum-Thysen, Anna

    IZA Journal of Labor Economics, Vol. 4 (2015), Iss. 1

    https://doi.org/10.1186/s40172-015-0034-4 [Citations: 54]
  213. Using Textual Information to Predict In Macroeconomics

    Kurovskiy, Gleb

    Moscow University Economics Bulletin, Vol. 2019 (2019), Iss. 6 P.39

    https://doi.org/10.38050/01300105201965 [Citations: 4]
  214. Using Google Data to Predict Who Will Vote

    Stephens-Davidowitz, Seth I.

    SSRN Electronic Journal, Vol. (2013), Iss.

    https://doi.org/10.2139/ssrn.2238863 [Citations: 1]
  215. Mapping digital businesses with big data: Some early findings from the UK

    Nathan, Max | Rosso, Anna

    Research Policy, Vol. 44 (2015), Iss. 9 P.1714

    https://doi.org/10.1016/j.respol.2015.01.008 [Citations: 36]
  216. Wine and Tourism

    Google Search Activity as Thermometer of Wine Cellar Visitors

    Gómez-Martínez, Raúl | Prado-Román, Camilo | Díez-Martín, Francisco

    2016

    https://doi.org/10.1007/978-3-319-18857-7_17 [Citations: 1]
  217. Using Google Searches of Firm Products to Assess Revenue Quality and Detect Revenue Management

    Chiu, Peng-Chia | Teoh, Siew Hong | Zhang, Yinglei | Huang, Xuan

    SSRN Electronic Journal , Vol. (2018), Iss.

    https://doi.org/10.2139/ssrn.3252314 [Citations: 2]
  218. Using Machine Learning Methods to Predict Consumer Confidence from Search Engine Data

    Han, Huijian | Li, Zhiming | Li, Zongwei

    Sustainability, Vol. 15 (2023), Iss. 4 P.3100

    https://doi.org/10.3390/su15043100 [Citations: 2]
  219. The Effect of Psychological Disease Portrayals in TV Series on Internet Searches: A Google Trends Based Analysis

    ÖZKENT, Yasemin

    İletişim Kuram ve Araştırma Dergisi, Vol. (2023), Iss. 63 P.36

    https://doi.org/10.47998/ikad.1159182 [Citations: 0]
  220. Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method

    Dong, Jichang | Dai, Wei | Liu, Ying | Yu, Lean | Wang, Jie

    International Journal of Information Technology & Decision Making, Vol. 18 (2019), Iss. 05 P.1605

    https://doi.org/10.1142/S0219622019500287 [Citations: 9]
  221. The effect of interest in renewable energy on US household electricity consumption: An analysis using Google Trends data

    Park, Sungjun | Kim, Jinsoo

    Renewable Energy, Vol. 127 (2018), Iss. P.1004

    https://doi.org/10.1016/j.renene.2018.05.044 [Citations: 21]
  222. Google search patterns suggest declining interest in the environment

    Mccallum, Malcolm L. | Bury, Gwendolyn W.

    Biodiversity and Conservation, Vol. 22 (2013), Iss. 6-7 P.1355

    https://doi.org/10.1007/s10531-013-0476-6 [Citations: 113]
  223. Dreaming of Blue Skies: Evidence on Air Pollution and the Mobility Aspirations of Young People in Beijing from Online Search Behavior

    Zhu, Mingying | Heyes, Anthony

    Environmental and Resource Economics, Vol. 87 (2024), Iss. 11 P.2889

    https://doi.org/10.1007/s10640-024-00917-3 [Citations: 0]
  224. Evidence from Retail Food Markets That Consumers Are Confused by Natural and Organic Food Labels

    Kuchler, F. | Bowman, M. | Sweitzer, M. | Greene, C.

    Journal of Consumer Policy, Vol. 43 (2020), Iss. 2 P.379

    https://doi.org/10.1007/s10603-018-9396-x [Citations: 20]
  225. A Robust Textual Analysis of the Dynamics of Hong Kong Property Market

    Wong, Ken | Kwong, Max | Luk, Paul | Cheng, Michael

    SSRN Electronic Journal , Vol. (2021), Iss.

    https://doi.org/10.2139/ssrn.3841386 [Citations: 0]
  226. Information Sharing with ICT in Production Systems and Operational Performance

    Pérez-López, Rubén Jesús | Olguín Tiznado, Jesús Everardo | Mojarro Magaña, María | Camargo Wilson, Claudia | López Barreras, Juan Andrés | García-Alcaraz, Jorge Luis

    Sustainability, Vol. 11 (2019), Iss. 13 P.3640

    https://doi.org/10.3390/su11133640 [Citations: 12]
  227. Co-query volume as a proxy for brand relatedness

    Cho, Sulah

    Industrial Management & Data Systems, Vol. 118 (2018), Iss. 4 P.930

    https://doi.org/10.1108/IMDS-04-2017-0154 [Citations: 3]
  228. Internet Search Behavior, Liquidity and Prices in the Housing Market

    van Dijk, Dorinth | Francke, Marc

    SSRN Electronic Journal, Vol. (2015), Iss.

    https://doi.org/10.2139/ssrn.2654170 [Citations: 0]
  229. A MIDAS modelling framework for Chinese inflation index forecast incorporating Google search data

    Li, Xin | Shang, Wei | Wang, Shouyang | Ma, Jian

    Electronic Commerce Research and Applications, Vol. 14 (2015), Iss. 2 P.112

    https://doi.org/10.1016/j.elerap.2015.01.001 [Citations: 40]
  230. Quantifying Wikipedia Usage Patterns Before Stock Market Moves

    Moat, Helen Susannah | Curme, Chester | Avakian, Adam | Kenett, Dror Y. | Stanley, H. Eugene | Preis, Tobias

    Scientific Reports, Vol. 3 (2013), Iss. 1

    https://doi.org/10.1038/srep01801 [Citations: 202]
  231. Determinants of House Price Dynamics. What Can We Learn From Search Engine Data?

    Bennnhr, Lars | Oestmann, Marco

    SSRN Electronic Journal, Vol. (2014), Iss.

    https://doi.org/10.2139/ssrn.2513199 [Citations: 0]
  232. A web survey analysis of subjective well-being

    Nikolaos Askitas and Professor Klaus F. Zimmermann, Professor | Guzi, Martin | de Pedraza García, Pablo

    International Journal of Manpower, Vol. 36 (2015), Iss. 1 P.48

    https://doi.org/10.1108/IJM-12-2014-0237 [Citations: 37]
  233. Using Internet Search Data as Economic Indicators

    McLaren, Nick | Shanbhogue, Rachana

    SSRN Electronic Journal, Vol. (2011), Iss.

    https://doi.org/10.2139/ssrn.1865276 [Citations: 67]
  234. Insights on unemployment, unemployment insurance, and mental health

    Tefft, Nathan

    Journal of Health Economics, Vol. 30 (2011), Iss. 2 P.258

    https://doi.org/10.1016/j.jhealeco.2011.01.006 [Citations: 125]
  235. A Study On The Influencing Factors Of Tourism Demand From Mainland China To Hong Kong

    Liu, Han | Liu, Wei | Wang, Yonglian

    Journal of Hospitality & Tourism Research, Vol. 45 (2021), Iss. 1 P.171

    https://doi.org/10.1177/1096348020944435 [Citations: 18]
  236. Incidence of Online Health Information Search: A Useful Proxy for Public Health Risk Perception

    Liang, Bo | Scammon, Debra L

    Journal of Medical Internet Research, Vol. 15 (2013), Iss. 6 P.e114

    https://doi.org/10.2196/jmir.2401 [Citations: 25]
  237. Monitoring Influenza Epidemics in China with Search Query from Baidu

    Yuan, Qingyu | Nsoesie, Elaine O. | Lv, Benfu | Peng, Geng | Chunara, Rumi | Brownstein, John S. | Cowling, Benjamin J.

    PLoS ONE, Vol. 8 (2013), Iss. 5 P.e64323

    https://doi.org/10.1371/journal.pone.0064323 [Citations: 176]
  238. Business ethics searches: A socioeconomic and demographic analysis of U.S. Google Trends in the context of the 2008 financial crisis

    Faugère, Christophe | Gergaud, Olivier

    Business Ethics: A European Review, Vol. 26 (2017), Iss. 3 P.271

    https://doi.org/10.1111/beer.12138 [Citations: 7]
  239. Relationship between web search data and the sales of German car in China

    Zhang, Yang

    2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA), (2013), P.232

    https://doi.org/10.1109/IMSNA.2013.6743258 [Citations: 0]
  240. A Deep Spatiotemporal Fuzzy Neural Network for Subway Passenger Flow Prediction With COVID-19 Search Engine Data

    Tu, Qun | Zhang, Qianqian | Zhang, Zhenji | Gong, Daqing | Tang, Mincong

    IEEE Transactions on Fuzzy Systems, Vol. 31 (2023), Iss. 2 P.394

    https://doi.org/10.1109/TFUZZ.2022.3179779 [Citations: 8]
  241. Fiscal uncertainty and sovereign credit risk

    Hantzsche, Arno

    European Economic Review, Vol. 148 (2022), Iss. P.104245

    https://doi.org/10.1016/j.euroecorev.2022.104245 [Citations: 6]
  242. Forecasting unemployment insurance claims in realtime with Google Trends

    Aaronson, Daniel | Brave, Scott A. | Butters, R. Andrew | Fogarty, Michael | Sacks, Daniel W. | Seo, Boyoung

    International Journal of Forecasting, Vol. 38 (2022), Iss. 2 P.567

    https://doi.org/10.1016/j.ijforecast.2021.04.001 [Citations: 22]
  243. Nowcasting New Car Registrations with Google Search Data and Car Manufacturers' Website Traffic

    Doligalski, Tymoteusz | Tomczyk, Emilia

    SSRN Electronic Journal, Vol. (2015), Iss.

    https://doi.org/10.2139/ssrn.2625132 [Citations: 0]
  244. New Challenges in Entrepreneurship and Finance

    Google Search Activity as Entrepreneurship Thermometer

    Gómez Martínez, Raúl | Prado Román, Miguel | Mercado Idoeta, Carmelo

    2015

    https://doi.org/10.1007/978-3-319-08888-4_16 [Citations: 5]
  245. Novel surveillance of psychological distress during the great recession

    Ayers, John W. | Althouse, Benjamin M. | Allem, Jon-Patrick | Childers, Matthew A. | Zafar, Waleed | Latkin, Carl | Ribisl, Kurt M. | Brownstein, John S.

    Journal of Affective Disorders, Vol. 142 (2012), Iss. 1-3 P.323

    https://doi.org/10.1016/j.jad.2012.05.005 [Citations: 47]
  246. Ten years of research change using Google Trends: From the perspective of big data utilizations and applications

    Jun, Seung-Pyo | Yoo, Hyoung Sun | Choi, San

    Technological Forecasting and Social Change, Vol. 130 (2018), Iss. P.69

    https://doi.org/10.1016/j.techfore.2017.11.009 [Citations: 315]
  247. Selecting sensitive web info via conditional probabilities to model economics and financial variables

    Monaco, Andrea | Perrotta, Adamaria | Mulligan, Joseph

    Empirical Economics, Vol. 66 (2024), Iss. 1 P.467

    https://doi.org/10.1007/s00181-023-02463-1 [Citations: 0]
  248. New Statistical Developments in Data Science

    Sampling and Modelling Issues Using Big Data in Now-Casting

    Simona Andreano, M. | Benedetti, Roberto | Piersimoni, Federica | Postiglione, Paolo | Savio, Giovanni

    2019

    https://doi.org/10.1007/978-3-030-21158-5_14 [Citations: 1]
  249. Finding temporal associative patterns of Web search with stock price movements for trading strategy design

    Wei, Qiang | Zhao, Xian | Wang, Changyu | Chen, Guoqing

    2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), (2016), P.445

    https://doi.org/10.1109/FUZZ-IEEE.2016.7737721 [Citations: 1]
  250. How Unemployment Affects Bond Prices: A Mixed Frequency Google Nowcasting Approach

    Dimpfl, Thomas | Langen, Tobias

    Computational Economics, Vol. 54 (2019), Iss. 2 P.551

    https://doi.org/10.1007/s10614-018-9840-7 [Citations: 2]
  251. Stock trade volume prediction with Yahoo Finance user browsing behavior

    Bordino, Ilaria | Kourtellis, Nicolas | Laptev, Nikolay | Billawala, Youssef

    2014 IEEE 30th International Conference on Data Engineering, (2014), P.1168

    https://doi.org/10.1109/ICDE.2014.6816733 [Citations: 18]
  252. Predicting Chinese consumption series with Baidu

    Song, Zhongchen | Coupé, Tom

    Journal of Chinese Economic and Business Studies, Vol. 21 (2023), Iss. 3 P.429

    https://doi.org/10.1080/14765284.2022.2161175 [Citations: 0]
  253. Characteristics of Bitcoin users: an analysis of Google search data

    Yelowitz, Aaron | Wilson, Matthew

    Applied Economics Letters, Vol. 22 (2015), Iss. 13 P.1030

    https://doi.org/10.1080/13504851.2014.995359 [Citations: 176]
  254. Use of Google Trends in modelling registered unemployment rate in Poland

    Malinowski, Mariusz

    Wiadomości Statystyczne. The Polish Statistician, Vol. 66 (2021), Iss. 3 P.45

    https://doi.org/10.5604/01.3001.0014.7986 [Citations: 0]
  255. Underpricing, underperformance and overreaction in initial public offerings: Evidence from investor attention using online searches

    Vakrman, Tomas | Kristoufek, Ladislav

    SpringerPlus, Vol. 4 (2015), Iss. 1

    https://doi.org/10.1186/s40064-015-0839-4 [Citations: 12]
  256. The Thermodynamics of the Economy

    Huang, Feng | Zhang, Bohui | Zhao, Xiaofeng

    SSRN Electronic Journal, Vol. (2023), Iss.

    https://doi.org/10.2139/ssrn.4393439 [Citations: 0]
  257. Searching for a better life: Predicting international migration with online search keywords

    Böhme, Marcus H. | Gröger, André | Stöhr, Tobias

    Journal of Development Economics, Vol. 142 (2020), Iss. P.102347

    https://doi.org/10.1016/j.jdeveco.2019.04.002 [Citations: 54]
  258. A transparent legal system of indicators as the indicator of personal fit

    Pečarič, Mirko

    International Journal of Organizational Analysis, Vol. 26 (2018), Iss. 1 P.171

    https://doi.org/10.1108/IJOA-08-2017-1210 [Citations: 1]
  259. Using Newspapers for Tracking the Business Cycle: A Comparative Study for Germany and Switzerland

    Iselin, David | Siliverstovs, Boriss

    SSRN Electronic Journal, Vol. (2013), Iss.

    https://doi.org/10.2139/ssrn.2280245 [Citations: 2]
  260. Health and well-being in the great recession

    Nikolaos Askitas and Professor Klaus F. Zimmermann, Professor | Askitas, Nikolaos | Zimmermann, Klaus F.

    International Journal of Manpower, Vol. 36 (2015), Iss. 1 P.26

    https://doi.org/10.1108/IJM-12-2014-0260 [Citations: 17]
  261. A poisson regression examination of the relationship between website traffic and search engine queries

    R. Tierney, Heather L. | Pan, Bing

    NETNOMICS: Economic Research and Electronic Networking, Vol. 13 (2012), Iss. 3 P.155

    https://doi.org/10.1007/s11066-013-9072-x [Citations: 7]
  262. Measuring objective and subjective well-being: dimensions and data sources

    Voukelatou, Vasiliki | Gabrielli, Lorenzo | Miliou, Ioanna | Cresci, Stefano | Sharma, Rajesh | Tesconi, Maurizio | Pappalardo, Luca

    International Journal of Data Science and Analytics, Vol. 11 (2021), Iss. 4 P.279

    https://doi.org/10.1007/s41060-020-00224-2 [Citations: 148]
  263. A novel business cycle surveillance system using the query logs of search engines

    Chen, Chien Chin | Tsai, Yi-Tian

    Knowledge-Based Systems, Vol. 30 (2012), Iss. P.104

    https://doi.org/10.1016/j.knosys.2011.12.012 [Citations: 2]
  264. Well-being through the lens of the internet

    Algan, Yann | Murtin, Fabrice | Beasley, Elizabeth | Higa, Kazuhito | Senik, Claudia | Moat, Helen Susannah

    PLOS ONE, Vol. 14 (2019), Iss. 1 P.e0209562

    https://doi.org/10.1371/journal.pone.0209562 [Citations: 11]
  265. Forecasting tourist arrivals with machine learning and internet search index

    Sun, Shaolong | Wang, Shouyang | Wei, Yunjie | Yang, Xianduan | Tsui, Kwok-Leung

    2017 IEEE International Conference on Big Data (Big Data), (2017), P.4165

    https://doi.org/10.1109/BigData.2017.8258439 [Citations: 6]
  266. Austerity Plan Announcements and the Impact on the Employees' Wellbeing

    Botezat, Alina

    SSRN Electronic Journal , Vol. (2017), Iss.

    https://doi.org/10.2139/ssrn.2900891 [Citations: 0]
  267. Nowcast of TV Market using Google Trend Data

    Youn, Seongwook | Cho, Hyun-chong

    Journal of Electrical Engineering and Technology, Vol. 11 (2016), Iss. 1 P.227

    https://doi.org/10.5370/JEET.2016.11.1.227 [Citations: 8]
  268. Forecasting the importance of product attributes using online customer reviews and Google Trends

    Yakubu, Hanan | Kwong, C.K.

    Technological Forecasting and Social Change, Vol. 171 (2021), Iss. P.120983

    https://doi.org/10.1016/j.techfore.2021.120983 [Citations: 37]
  269. Forecasting Tourism Demand with Decomposed Search Cycles

    Li, Xin | Law, Rob

    Journal of Travel Research, Vol. 59 (2020), Iss. 1 P.52

    https://doi.org/10.1177/0047287518824158 [Citations: 74]
  270. Forecasting the Unemployment Rate by Neural Networks Using Search Engine Query Data

    Xu, Wei | Li, Ziang | Chen, Qing

    2012 45th Hawaii International Conference on System Sciences, (2012), P.3591

    https://doi.org/10.1109/HICSS.2012.284 [Citations: 5]
  271. Forecasting private consumption: survey-based indicators vs. Google trends

    Vosen, Simeon | Schmidt, Torsten

    Journal of Forecasting, Vol. 30 (2011), Iss. 6 P.565

    https://doi.org/10.1002/for.1213 [Citations: 380]
  272. Handbook of Labor, Human Resources and Population Economics

    Time Series Models

    Lahiri, Kajal | Yang, Cheng

    2022

    https://doi.org/10.1007/978-3-319-57365-6_53-1 [Citations: 0]
  273. Can search data help forecast inflation? Evidence from a 13-country panel

    Wei, Yunjie | Zhang, Xun | Wang, Shouyang

    2017 IEEE International Conference on Big Data (Big Data), (2017), P.4184

    https://doi.org/10.1109/BigData.2017.8258442 [Citations: 4]
  274. Nowcasting of the U.S. unemployment rate using Google Trends

    Nagao, Shintaro | Takeda, Fumiko | Tanaka, Riku

    Finance Research Letters, Vol. 30 (2019), Iss. P.103

    https://doi.org/10.1016/j.frl.2019.04.005 [Citations: 47]
  275. The importance of foreign language skills in the labour markets of Central and Eastern Europe: assessment based on data from online job portals

    Fabo, Brian | Beblavý, Miroslav | Lenaerts, Karolien

    Empirica, Vol. 44 (2017), Iss. 3 P.487

    https://doi.org/10.1007/s10663-017-9374-6 [Citations: 26]
  276. THE 2007–2008 U.S. RECESSION: WHAT DID THE REAL‐TIME GOOGLE TRENDS DATA TELL THE UNITED STATES?

    Chen, Tao | So, Erin Pik Ki | Wu, Liang | Yan, Isabel Kit Ming

    Contemporary Economic Policy, Vol. 33 (2015), Iss. 2 P.395

    https://doi.org/10.1111/coep.12074 [Citations: 28]
  277. Public attention and Xinjiang CPI - A empirical study based on Baidu search index

    Liu, Chao-qun | Peng, Geng | Wan, Hong-jie

    2014 International Conference on Management Science & Engineering 21th Annual Conference Proceedings, (2014), P.1932

    https://doi.org/10.1109/ICMSE.2014.6930472 [Citations: 0]
  278. Decomposing the Impact of Advertising: Augmenting Sales with Online Search Data

    Hu, Ye | Du, Rex Yuxing | Damangir, Sina

    Journal of Marketing Research, Vol. 51 (2014), Iss. 3 P.300

    https://doi.org/10.1509/jmr.12.0215 [Citations: 70]
  279. Can Google Trends predict asylum-seekers’ destination choices?

    Qi, Haodong | Bircan, Tuba

    EPJ Data Science, Vol. 12 (2023), Iss. 1

    https://doi.org/10.1140/epjds/s13688-023-00419-0 [Citations: 2]
  280. A Tool to Nowcast Tourist Overnight Stays with Payment Data and Complementary Indicators

    Crispino, Marta | Mariani, Vincenzo

    Italian Economic Journal, Vol. (2024), Iss.

    https://doi.org/10.1007/s40797-024-00266-6 [Citations: 1]
  281. Foreign arrivals nowcasting in Italy with Google Trends data

    Antolini, F. | Grassini, L.

    Quality & Quantity, Vol. 53 (2019), Iss. 5 P.2385

    https://doi.org/10.1007/s11135-018-0748-z [Citations: 15]
  282. Examining the Effect of Public Attention on U.S. Senate Election Outcomes

    Swearingen, Colin | Ripberger, Joseph T.

    SSRN Electronic Journal, Vol. (2011), Iss.

    https://doi.org/10.2139/ssrn.1924574 [Citations: 0]
  283. Forecasting tourist arrivals with machine learning and internet search index

    Sun, Shaolong | Wei, Yunjie | Tsui, Kwok-Leung | Wang, Shouyang

    Tourism Management, Vol. 70 (2019), Iss. P.1

    https://doi.org/10.1016/j.tourman.2018.07.010 [Citations: 257]
  284. Predicting consumer behavior with Web search

    Goel, Sharad | Hofman, Jake M. | Lahaie, Sébastien | Pennock, David M. | Watts, Duncan J.

    Proceedings of the National Academy of Sciences, Vol. 107 (2010), Iss. 41 P.17486

    https://doi.org/10.1073/pnas.1005962107 [Citations: 411]
  285. Desperately Seeking Sonia? Latino Heterogeneity and Geographic Variation in Web Searches for Judge Sonia Sotomayor

    Manzano, Sylvia | Ura, Joseph D.

    Political Communication, Vol. 30 (2013), Iss. 1 P.81

    https://doi.org/10.1080/10584609.2012.737415 [Citations: 12]
  286. Impact of Financial Digitalization on Organizational Performance

    Wang, Huan | Zheng, Leven J. | Xu, Xiaobo | Hung, Tak Hung Barry

    Journal of Global Information Management, Vol. 30 (2022), Iss. 1 P.1

    https://doi.org/10.4018/JGIM.301602 [Citations: 1]
  287. Association between Stock Market Gains and Losses and Google Searches

    Arditi, Eli | Yechiam, Eldad | Zahavi, Gal | Bask, Mikael

    PLOS ONE, Vol. 10 (2015), Iss. 10 P.e0141354

    https://doi.org/10.1371/journal.pone.0141354 [Citations: 4]
  288. The racial ‘digital divide’ in the predictive power of Google trends data for forecasting the unemployment rate

    Dilmaghani, Maryam

    Journal of Economic and Social Measurement, Vol. 43 (2019), Iss. 3-4 P.119

    https://doi.org/10.3233/JEM-180458 [Citations: 3]
  289. A Novel Bipartite Graph Based Competitiveness Degree Analysis from Query Logs

    Wei, Qiang | Qiao, Dandan | Zhang, Jin | Chen, Guoqing | Guo, Xunhua

    ACM Transactions on Knowledge Discovery from Data, Vol. 11 (2017), Iss. 2 P.1

    https://doi.org/10.1145/2996196 [Citations: 12]
  290. Periodicity analysis and a model structure for consumer behavior on hotel online search interest in the US

    Liu, Juan | Li, Xue | Guo, Ya

    International Journal of Contemporary Hospitality Management, Vol. 29 (2017), Iss. 5 P.1486

    https://doi.org/10.1108/IJCHM-06-2015-0280 [Citations: 6]
  291. Workopolis or The Pirate Bay: what does Google Trends say about the unemployment rate?

    Dilmaghani, Maryam

    Journal of Economic Studies, Vol. 46 (2019), Iss. 2 P.422

    https://doi.org/10.1108/JES-11-2017-0346 [Citations: 14]
  292. Methoden der Journalismusforschung

    Messung der Publikumsagenda mittels Nutzungsstatistiken von Suchmaschinenanfragen

    Vogelgesang, Jens | Scharkow, Michael

    2011

    https://doi.org/10.1007/978-3-531-93131-9_17 [Citations: 1]
  293. Using the Internet to Understand Angler Behavior in the Information Age

    Martin, Dustin R. | Pracheil, Brenda M. | DeBoer, Jason A. | Wilde, Gene R. | Pope, Kevin L.

    Fisheries, Vol. 37 (2012), Iss. 10 P.458

    https://doi.org/10.1080/03632415.2012.722875 [Citations: 33]

Abstract

The current economic crisis requires fast information to predict economic behavior early, which is difficult at times of structural changes. This paper suggests an innovative new method of using data on internet activity for that purpose. It demonstrates strong correlations between keyword searches and unemployment rates using monthly German data and exhibits a strong potential for the method used.

JEL Classification: C22, C82, E17, E24, E37