Menu Expand

Cite BOOK Chapter

Style

Baumbach, J., Kazemi Majdabadi, M., Saak, C., Bakhtiari, M., Probul, N. (2024). 'Föderiertes Lernen: ein Hilfsmittel zur datenschutzkonformen Forschung in der Biomedizin und darüber hinaus' In G. Buchholtz, L. Hering, (Eds.), Digital Health und Recht (1st ed., pp. 263-284)
Baumbach, Jan Kazemi Majdabadi, Mohammad Mahdi Saak, Christina Caroline Bakhtiari, Mohammad and Probul, Niklas. "Föderiertes Lernen: ein Hilfsmittel zur datenschutzkonformen Forschung in der Biomedizin und darüber hinaus". Digital Health und Recht, edited by Gabriele Buchholtz and Laura Hering, Duncker & Humblot, 2024, pp. 263-284.
Baumbach, J, Kazemi Majdabadi, M, Saak, C, Bakhtiari, M and Probul, N. (2024): 'Föderiertes Lernen: ein Hilfsmittel zur datenschutzkonformen Forschung in der Biomedizin und darüber hinaus', in Buchholtz, G, Hering, L (eds.). Digital Health und Recht. Duncker & Humblot, pp. 263-284.

Format

Föderiertes Lernen: ein Hilfsmittel zur datenschutzkonformen Forschung in der Biomedizin und darüber hinaus

Baumbach, Jan | Kazemi Majdabadi, Mohammad Mahdi | Saak, Christina Caroline | Bakhtiari, Mohammad | Probul, Niklas

In: Digital Health und Recht (2024), pp. 263–284

Additional Information

Chapter Details

Author Details

Jan Baumbach

Jan Baumbach, Dr. rer. nat., Professor, Leiter des Institute for Computational Systems Biology, Universität Hamburg

Mohammad Mahdi Kazemi Majdabadi

Mohammad Mahdi Kazemi Majdabadi, Wissenschaftlicher Mitarbeiter, Institute for Computational Systems Biology, Universität Hamburg

Christina Caroline Saak

Christina Caroline Saak, PhD, Science Managerin, Institute for Computational Systems Biology, Universität Hamburg

Mohammad Bakhtiari

Mohammad Bakhtiari, Wissenschaftlicher Mitarbeiter, Institute for Computational Systems Biology, Universität Hamburg

Niklas Probul

Niklas Probul, Wissenschaftlicher Mitarbeiter, Institute for Computational Systems Biology, Universität Hamburg

References

  1. Brauneck, Alissa/Schmalhorst, Louisa/Kazemi Majdabadi, Mohammad Mahdi/Bakhtiari, Mohammad/Völker, Uwe/Saak, Christina Caroline/Baumbach, Jan/Baumbach, Linda/Buchholtz, Gabriele: Federated machine learning in data-protection-compliant research, Nature Machine Intelligence, 5 (2023), S. 2.  Google Scholar
  2. Hao, Meng/Li, Hongwei/Xu, Guowen/Liu, Sen/Yang, Haomiao: Towards Efficient and Privacy-Preserving Federated Deep Learning, ICC 2019–2019 IEEE International Conference on Communications (ICC), 2019, S. 1.  Google Scholar
  3. Hulsen, Tim/Jamuar, Saumya/Moody, Alan R./Karnes, Jason H./Varga, Orsolya/Hedensted, Stine/Spreafico, Roberto/Hafler, David A./McKinney, Eoin F.: From Big Data to Precision Medicine, Frontiers Medicine, 6 (2019), S. 34.  Google Scholar
  4. Kairouz, Peter/McMahan, Brendan/Avent, Brendan/Bellet, Aurelien/Bennis, Mehdi/Bhagoji, Arjun Nitin/Bonawitz, Kallista/Charles, Zachary/Cormode, Graham/Cummings, Rachel/D’Oliveira, Rafael/Eichner, Hubert/Rouayheb, Salim El/Evans, David/Gardner, Josh/Garrett, Zachary/Gascón, Adria/Ghazi, Badih/Gibbons, Phillip B./Gruteser, Marco/Harchaoui, Zaid/He, Chaoyang/He, Lie/Huo, Zhouyuan/Hutchinson, Ben/Hsu, Justin/Jaggi, Martin/Javidi, Tara/Joshi, Gauri/Khodak, Mikhail/Konecny´, Jakub/Korolova, Aleksandra/Koushanfar, Farinaz/Koyejo, Sanmi/Lepoint, Tancrede/Liu, Yang/Mittal, Prateek/Mohri, Mehryar/Nock, Richard/Özgür, Ayfer/Pagh, Ayfer/Qi, Hang/Ramage, Daniel/Raskar, Ramesh/Raykova, Mariana/Song, Dawn/Song,Weikang/Stich, Sebastian U./Sun, Ziteng/Suresh, Ananda Theertha/Tramèr, Florian/Vepakomma, Praneeth/Wang, Juanyu/Xiong, Li/Xu, Zheng/Yang, Qiang/Yu, Felix X./Yu, Han/Zhao, Sen: Advances and Open Problems in Federated Learning, Foundations and Trends in Machine Learning, 14 (2021), S. 1.  Google Scholar
  5. Matschinske, Julian/Späth, Julian/Bakhtiair, Mohammad/Probul, Niklas/Majdabadi, Mohammad M.K./Nasirigerdeh, Reza/Torkzadehmahani, Reihaneh/Hartebrodt, Anne/Orbán, Balazs-Attila/Fejér, Sándor-József/Zolotareva, Olga/Das, Supratim/Baumbach, Linda/Pauling, Josch K./Tomasˇevic´, Olivera/Bihari, Béla/Bloice, Marcus/Donner, Nina C./Fdhila, Walid/Frisch, Tobias/Hauschild, Anne-Christin/Heider, Dominik/Holzinger, Andreas/Hötzendorfer, Walter/Hospes, Jan/Kacprowski, Tim/Kastelitz, Markus/List, Markus/Mayer, Rudolf/Moga, Mónika/Müller, Heimo/Pustozerova, Anastasia/Röttger, Richard/Saak, Christina C./Saranti, Anna/Schmidt, Harald H./Tschohl, Christof/Wenke, Nina K./Baumbach, Jan: The FeatureCloud Platform for Federated Learning in Biomedicine: Unifired Approach, Journal of Medical Internet Research, 25 (2023), e42621.  Google Scholar
  6. McMahan, Brendan/Moore, Eider/Ramage, Daniel/Hampson, Seth/Arcas, Blaise Aguera y: Communication-Efficient Learning of Deep Networks from Decentralized Data, Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 54 (2017), S. 1273.  Google Scholar
  7. Nasirigerdeh, Reza/Torkzadehmahani, Reihaneh/Matschinske, Julian/Frisch, Tobias/List, Markus/Späth, Julian/Weiss, Stefan/Völker, Uwe/Pitkänen, Esa/Heider, Esa/Wenke, Nina K./Kaissis, Georgios/Rueckert, Daniel/Kacprowski, Tim/Baumbach, Jan: sPLINK: a hybrid federated tool as a robust alternative to meta-analysis in genome-wide association studies, Genome Biology, 23 (2022), S. 1.  Google Scholar
  8. Ogundokun, Roseline Oluwaseun/Misra, Sanjay/Maskeliunas, Rytis/Damasevicius, Robertas: A Review on Federated Learning and Machine Learning Approaches: Categorization, Application Areas, and Blockchain Technology, Information, 13 (2022), S. 263.  Google Scholar
  9. Silva, Santiago/Gutman, Boris/Romero, Eduardo/Thompson, Paul M./Altmann, Andre/Lorenzi, Marco/ADNI/PPMI/UK Biobank: Federated Learning in Distributed Medical Databases: Meta-Analysis of Large-Scale Subcortical Brain Data, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, S. 270.  Google Scholar
  10. Späth, Julian/Matschinske, Julian/Kamanu, Frederick K./Murphy, Sabina A./Zolotareva, Olga/Bakhtiari, Mohammad/Antman, Elliott M./Loscalzo, Joseph/Brauneck, Alissa/Schmalhorst, Louisa/Buchholtz, Gabriele/Baumbach, Jan: Privacy-aware multi-institutional time-to-event studies, PLOS Digit Health, 1 (2022), S. 1.  Google Scholar
  11. Torkzadehmahani, Reihaneh/Nasirigerdeh, Reza/Blumenthal, David B./Kacprowski, Tim/List, Markus/Matschinske, Julian/Späth, Julian/Wenke, Nina Kerstin/Baumbach, Jan: Privacy-Preserving Artificial Intelligence Techniques in Biomedicine, Methods of Information in Medicine, 61 (2022), S. e12.  Google Scholar
  12. Yang, Qiang/Liu, Yang/Chen, Tianjian/Tong, Yongxin: Federated Machine Learning: Concept and Applications, ACM Transactions on Intelligent Systems and Technology, 10 (2019), S. 1.  Google Scholar
  13. Zhao, Chuan/Zhao, Shengnan/Zhao, Minghao/Chen, Zhenxiang/Gao, Chong-Zhi/Li, Hongwei/Tan, Yu-an: Secure Multi-Party Computation: Theory, practice and applications, Information Sciences, 476 (2019), S. 357.  Google Scholar
  14. Ziller, Alexander/Trask, Andrew/Lopardo, Antonio/Szymkow, Benjamin/Wagner, Bobby/Bluemke, Emma/Nounahon, Jean-Mickael: PySyft: A Library for Easy Federated Learning, in: Rehman/Gaber, Federated Learning Systems: Towards Next-Generation AI, 2021, S. 111.  Google Scholar
  15. Zolotareva, Olga/Nasirigerdeh, Reza/Matschinske, Julian/Torkzadehmahani, Reihaneh/Bakhtiari, Mohammad/Frisch, Tobias/Späth, Julian/Blumenthal, David B./Abbasinejad, Amir/Tieri, Paolo/Kaissis, Georgios/Rückert, Daniel/Wenke, Nina K./List, Markus/Baumbach, Jan: Flimma: a federated and privacy-aware tool for differential gene expression analysis, Genome Biology, 22 (2021), S. 1.  Google Scholar