BOOK CHAPTER
Cite BOOK Chapter
Style
Format
Föderiertes Lernen: ein Hilfsmittel zur datenschutzkonformen Forschung in der Biomedizin und darüber hinaus
Baumbach, Jan | Kazemi Majdabadi, Mohammad Mahdi | Saak, Christina Caroline | Bakhtiari, Mohammad | Probul, Niklas
In: Digital Health und Recht (2024), pp. 263–284
Additional Information
Chapter Details
Author Details
Jan Baumbach
Jan Baumbach, Dr. rer. nat., Professor, Leiter des Institute for Computational Systems Biology, Universität Hamburg
Mohammad Mahdi Kazemi Majdabadi
Mohammad Mahdi Kazemi Majdabadi, Wissenschaftlicher Mitarbeiter, Institute for Computational Systems Biology, Universität Hamburg
Christina Caroline Saak
Christina Caroline Saak, PhD, Science Managerin, Institute for Computational Systems Biology, Universität Hamburg
Mohammad Bakhtiari
Mohammad Bakhtiari, Wissenschaftlicher Mitarbeiter, Institute for Computational Systems Biology, Universität Hamburg
Niklas Probul
Niklas Probul, Wissenschaftlicher Mitarbeiter, Institute for Computational Systems Biology, Universität Hamburg
References
-
Brauneck, Alissa/Schmalhorst, Louisa/Kazemi Majdabadi, Mohammad Mahdi/Bakhtiari, Mohammad/Völker, Uwe/Saak, Christina Caroline/Baumbach, Jan/Baumbach, Linda/Buchholtz, Gabriele: Federated machine learning in data-protection-compliant research, Nature Machine Intelligence, 5 (2023), S. 2.
Google Scholar -
Hao, Meng/Li, Hongwei/Xu, Guowen/Liu, Sen/Yang, Haomiao: Towards Efficient and Privacy-Preserving Federated Deep Learning, ICC 2019–2019 IEEE International Conference on Communications (ICC), 2019, S. 1.
Google Scholar -
Hulsen, Tim/Jamuar, Saumya/Moody, Alan R./Karnes, Jason H./Varga, Orsolya/Hedensted, Stine/Spreafico, Roberto/Hafler, David A./McKinney, Eoin F.: From Big Data to Precision Medicine, Frontiers Medicine, 6 (2019), S. 34.
Google Scholar -
Kairouz, Peter/McMahan, Brendan/Avent, Brendan/Bellet, Aurelien/Bennis, Mehdi/Bhagoji, Arjun Nitin/Bonawitz, Kallista/Charles, Zachary/Cormode, Graham/Cummings, Rachel/D’Oliveira, Rafael/Eichner, Hubert/Rouayheb, Salim El/Evans, David/Gardner, Josh/Garrett, Zachary/Gascón, Adria/Ghazi, Badih/Gibbons, Phillip B./Gruteser, Marco/Harchaoui, Zaid/He, Chaoyang/He, Lie/Huo, Zhouyuan/Hutchinson, Ben/Hsu, Justin/Jaggi, Martin/Javidi, Tara/Joshi, Gauri/Khodak, Mikhail/Konecny´, Jakub/Korolova, Aleksandra/Koushanfar, Farinaz/Koyejo, Sanmi/Lepoint, Tancrede/Liu, Yang/Mittal, Prateek/Mohri, Mehryar/Nock, Richard/Özgür, Ayfer/Pagh, Ayfer/Qi, Hang/Ramage, Daniel/Raskar, Ramesh/Raykova, Mariana/Song, Dawn/Song,Weikang/Stich, Sebastian U./Sun, Ziteng/Suresh, Ananda Theertha/Tramèr, Florian/Vepakomma, Praneeth/Wang, Juanyu/Xiong, Li/Xu, Zheng/Yang, Qiang/Yu, Felix X./Yu, Han/Zhao, Sen: Advances and Open Problems in Federated Learning, Foundations and Trends in Machine Learning, 14 (2021), S. 1.
Google Scholar -
Matschinske, Julian/Späth, Julian/Bakhtiair, Mohammad/Probul, Niklas/Majdabadi, Mohammad M.K./Nasirigerdeh, Reza/Torkzadehmahani, Reihaneh/Hartebrodt, Anne/Orbán, Balazs-Attila/Fejér, Sándor-József/Zolotareva, Olga/Das, Supratim/Baumbach, Linda/Pauling, Josch K./Tomasˇevic´, Olivera/Bihari, Béla/Bloice, Marcus/Donner, Nina C./Fdhila, Walid/Frisch, Tobias/Hauschild, Anne-Christin/Heider, Dominik/Holzinger, Andreas/Hötzendorfer, Walter/Hospes, Jan/Kacprowski, Tim/Kastelitz, Markus/List, Markus/Mayer, Rudolf/Moga, Mónika/Müller, Heimo/Pustozerova, Anastasia/Röttger, Richard/Saak, Christina C./Saranti, Anna/Schmidt, Harald H./Tschohl, Christof/Wenke, Nina K./Baumbach, Jan: The FeatureCloud Platform for Federated Learning in Biomedicine: Unifired Approach, Journal of Medical Internet Research, 25 (2023), e42621.
Google Scholar -
McMahan, Brendan/Moore, Eider/Ramage, Daniel/Hampson, Seth/Arcas, Blaise Aguera y: Communication-Efficient Learning of Deep Networks from Decentralized Data, Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 54 (2017), S. 1273.
Google Scholar -
Nasirigerdeh, Reza/Torkzadehmahani, Reihaneh/Matschinske, Julian/Frisch, Tobias/List, Markus/Späth, Julian/Weiss, Stefan/Völker, Uwe/Pitkänen, Esa/Heider, Esa/Wenke, Nina K./Kaissis, Georgios/Rueckert, Daniel/Kacprowski, Tim/Baumbach, Jan: sPLINK: a hybrid federated tool as a robust alternative to meta-analysis in genome-wide association studies, Genome Biology, 23 (2022), S. 1.
Google Scholar -
Ogundokun, Roseline Oluwaseun/Misra, Sanjay/Maskeliunas, Rytis/Damasevicius, Robertas: A Review on Federated Learning and Machine Learning Approaches: Categorization, Application Areas, and Blockchain Technology, Information, 13 (2022), S. 263.
Google Scholar -
Silva, Santiago/Gutman, Boris/Romero, Eduardo/Thompson, Paul M./Altmann, Andre/Lorenzi, Marco/ADNI/PPMI/UK Biobank: Federated Learning in Distributed Medical Databases: Meta-Analysis of Large-Scale Subcortical Brain Data, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, S. 270.
Google Scholar -
Späth, Julian/Matschinske, Julian/Kamanu, Frederick K./Murphy, Sabina A./Zolotareva, Olga/Bakhtiari, Mohammad/Antman, Elliott M./Loscalzo, Joseph/Brauneck, Alissa/Schmalhorst, Louisa/Buchholtz, Gabriele/Baumbach, Jan: Privacy-aware multi-institutional time-to-event studies, PLOS Digit Health, 1 (2022), S. 1.
Google Scholar -
Torkzadehmahani, Reihaneh/Nasirigerdeh, Reza/Blumenthal, David B./Kacprowski, Tim/List, Markus/Matschinske, Julian/Späth, Julian/Wenke, Nina Kerstin/Baumbach, Jan: Privacy-Preserving Artificial Intelligence Techniques in Biomedicine, Methods of Information in Medicine, 61 (2022), S. e12.
Google Scholar -
Yang, Qiang/Liu, Yang/Chen, Tianjian/Tong, Yongxin: Federated Machine Learning: Concept and Applications, ACM Transactions on Intelligent Systems and Technology, 10 (2019), S. 1.
Google Scholar -
Zhao, Chuan/Zhao, Shengnan/Zhao, Minghao/Chen, Zhenxiang/Gao, Chong-Zhi/Li, Hongwei/Tan, Yu-an: Secure Multi-Party Computation: Theory, practice and applications, Information Sciences, 476 (2019), S. 357.
Google Scholar -
Ziller, Alexander/Trask, Andrew/Lopardo, Antonio/Szymkow, Benjamin/Wagner, Bobby/Bluemke, Emma/Nounahon, Jean-Mickael: PySyft: A Library for Easy Federated Learning, in: Rehman/Gaber, Federated Learning Systems: Towards Next-Generation AI, 2021, S. 111.
Google Scholar -
Zolotareva, Olga/Nasirigerdeh, Reza/Matschinske, Julian/Torkzadehmahani, Reihaneh/Bakhtiari, Mohammad/Frisch, Tobias/Späth, Julian/Blumenthal, David B./Abbasinejad, Amir/Tieri, Paolo/Kaissis, Georgios/Rückert, Daniel/Wenke, Nina K./List, Markus/Baumbach, Jan: Flimma: a federated and privacy-aware tool for differential gene expression analysis, Genome Biology, 22 (2021), S. 1.
Google Scholar